IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp941-954.html
   My bibliography  Save this article

An experiment-based model of condensate throttling and its utilization in load control of 1000 MW power units

Author

Listed:
  • Long, Dongteng
  • Wang, Wei
  • Yao, Chu
  • Liu, Jizhen

Abstract

Coal-fired power units are important to stabilize the grid fluctuation especially for the electrical power system with a large proportion of renewable sources. The unit load change speed and range controlled by traditional coordinate control system has become more and more insatiable for the integrations of fluctuant power sources. Condensate throttling is an efficient way to utilize storage energy of units, the mechanism analysis of regulating range and regulation maximum period in wide range of operating condition is proposed, and dynamic model in varying operation conditions is established through lots of trial experiments in a 1000 MW coal-fired power plant, the parameters of model are also discussed in different operating situations. A novel coordinate control system combining traditional coordinate control and condensate throttling system is proposed and the control performance in different regulating rates is investigated, the results and load distribution analysis proved that novel strategy achieve a superior fast response ability and static accuracy.

Suggested Citation

  • Long, Dongteng & Wang, Wei & Yao, Chu & Liu, Jizhen, 2017. "An experiment-based model of condensate throttling and its utilization in load control of 1000 MW power units," Energy, Elsevier, vol. 133(C), pages 941-954.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:941-954
    DOI: 10.1016/j.energy.2017.05.179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217308708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Congzhi & Sheng, Xinxin, 2020. "Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm," Energy, Elsevier, vol. 205(C).
    2. Wei Wang & Yang Sun & Sitong Jing & Wenguang Zhang & Can Cui, 2018. "Improved Boiler-Turbine Coordinated Control of CHP Units with Heat Accumulators by Introducing Heat Source Regulation," Energies, MDPI, vol. 11(10), pages 1-15, October.
    3. Wang, Zhu & Liu, Ming & Yan, Hui & Yan, Junjie, 2022. "Optimization on coordinate control strategy assisted by high-pressure extraction steam throttling to achieve flexible and efficient operation of thermal power plants," Energy, Elsevier, vol. 244(PA).
    4. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Li, Xin & Chong, Daotong & Yan, Junjie, 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes," Applied Energy, Elsevier, vol. 228(C), pages 2375-2386.
    5. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    6. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Wang, Di & Liu, Deying & Wang, Chaonan & Zhou, Yunlong & Li, Xiaoli & Yang, Mei, 2022. "Flexibility improvement method of coal-fired thermal power plant based on the multi-scale utilization of steam turbine energy storage," Energy, Elsevier, vol. 239(PD).
    8. Yang, Chao & Zhu, Yucai & Zhou, Jinming & Zhao, Jun & Bu, Ren & Feng, Guo, 2023. "Dynamic flexibility optimization of integrated energy system based on two-timescale model predictive control," Energy, Elsevier, vol. 276(C).
    9. Han, Zhonghe & Xiang, Peng, 2020. "Modeling condensate throttling to improve the load change performance of cogeneration units," Energy, Elsevier, vol. 192(C).
    10. Cao, Lihua & Li, Xiaoli & Wang, Di, 2022. "A thermodynamic system of coal-fired power unit coupled S–CO2 energy-storage cycle," Energy, Elsevier, vol. 259(C).
    11. Stevanovic, Vladimir D. & Ilic, Milica & Djurovic, Zeljko & Wala, Tadeusz & Muszynski, Slawomir & Gajic, Ivan, 2018. "Primary control reserve of electric power by feedwater flow rate change through an additional economizer – A case study of the thermal power plant “Nikola Tesla B”," Energy, Elsevier, vol. 147(C), pages 782-798.
    12. Wu, Zhenlong & Li, Donghai & Xue, Yali & Chen, YangQuan, 2019. "Gain scheduling design based on active disturbance rejection control for thermal power plant under full operating conditions," Energy, Elsevier, vol. 185(C), pages 744-762.
    13. Wang, Wei & Jing, Sitong & Sun, Yang & Liu, Jizhen & Niu, Yuguang & Zeng, Deliang & Cui, Can, 2019. "Combined heat and power control considering thermal inertia of district heating network for flexible electric power regulation," Energy, Elsevier, vol. 169(C), pages 988-999.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:941-954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.