IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2815-d176673.html
   My bibliography  Save this article

Improved Boiler-Turbine Coordinated Control of CHP Units with Heat Accumulators by Introducing Heat Source Regulation

Author

Listed:
  • Wei Wang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206, China)

  • Yang Sun

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Sitong Jing

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Wenguang Zhang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206, China)

  • Can Cui

    (School of Humanities and Social Sciences, North China Electric Power University, Beijing 102206, China)

Abstract

It is significant for power system stability to improve the operation flexibility of grid-connected units. Such improvement has always been a hot topic, especially for coal-fired units. In recent decades, it has become increasingly urgent and challenging as large-scale fluctuant renewable energy is connected to the power grid. Boiler-turbine coordinated control strategy (CCS), which is employed to perform unit load control according to automatic generation control (AGC), has a slow ramp rate in general on account of large delay and inertia of boiler, so to improve the unit operating flexibility, it is necessary to explore usable heat storage and optimize the control strategy. In combined heat and power (CHP) units with heat accumulators, their heat and power are decoupled. Therefore the extraction steam that goes to the heating station can be regulated flexibly even operating in “heat-led mode”. The change of extraction steam flow has a significant influence on the turbine power output, so we propose to improve the load-following capability of CHP units by regulating the heat source flow. In this paper, the influencing model is set up, and it is about heat source flow variations on the electric power output. The load control strategy is further optimized and designed through combinations of CCS and heat source regulation. Finally simulations and analysis are performed on a 330MW CHP unit, and the results reveal that the power ramp rate with our strategy is two times faster than that with traditional strategy.

Suggested Citation

  • Wei Wang & Yang Sun & Sitong Jing & Wenguang Zhang & Can Cui, 2018. "Improved Boiler-Turbine Coordinated Control of CHP Units with Heat Accumulators by Introducing Heat Source Regulation," Energies, MDPI, vol. 11(10), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2815-:d:176673
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2815/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2815/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2015. "Dynamic behaviour analysis of a three pressure level heat recovery steam generator during transient operation," Energy, Elsevier, vol. 90(P2), pages 1595-1605.
    2. Nenad Jovanović & Javier García-González & Santiago Cerisola & Julián Barquín, 2018. "Impact of Risk Aversion on the Operation of Hydroelectric Reservoirs in the Presence of Renewable Energy Sources," Energies, MDPI, vol. 11(6), pages 1-20, May.
    3. Nikolaos Diangelakis & Christos Panos & Efstratios Pistikopoulos, 2014. "Design optimization of an internal combustion engine powered CHP system for residential scale application," Computational Management Science, Springer, vol. 11(3), pages 237-266, July.
    4. Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
    5. Wang, Wei & Liu, Jizhen & Zeng, Deliang & Niu, Yuguang & Cui, Can, 2015. "An improved coordinated control strategy for boiler-turbine units supplemented by cold source flow adjustment," Energy, Elsevier, vol. 88(C), pages 927-934.
    6. Bogdan, Željko & Kopjar, Damir, 2006. "Improvement of the cogeneration plant economy by using heat accumulator," Energy, Elsevier, vol. 31(13), pages 2285-2292.
    7. Zhao, H. & Holst, J. & Arvastson, L., 1998. "Optimal operation of coproduction with storage," Energy, Elsevier, vol. 23(10), pages 859-866.
    8. Waite, Michael & Modi, Vijay, 2016. "Modeling wind power curtailment with increased capacity in a regional electricity grid supplying a dense urban demand," Applied Energy, Elsevier, vol. 183(C), pages 299-317.
    9. Gu, Wei & Wang, Jun & Lu, Shuai & Luo, Zhao & Wu, Chenyu, 2017. "Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings," Applied Energy, Elsevier, vol. 199(C), pages 234-246.
    10. Yang, Yulong & Wu, Kai & Long, Hongyu & Gao, Jianchao & Yan, Xu & Kato, Takeyoshi & Suzuoki, Yasuo, 2014. "Integrated electricity and heating demand-side management for wind power integration in China," Energy, Elsevier, vol. 78(C), pages 235-246.
    11. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
    12. Evangelos Rikos & Chris Caerts & Mattia Cabiati & Mazheruddin Syed & Graeme Burt, 2017. "Adaptive Fuzzy Control for Power-Frequency Characteristic Regulation in High-RES Power Systems," Energies, MDPI, vol. 10(7), pages 1-14, July.
    13. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    14. Ping Li & Haixia Wang & Quan Lv & Weidong Li, 2017. "Combined Heat and Power Dispatch Considering Heat Storage of Both Buildings and Pipelines in District Heating System for Wind Power Integration," Energies, MDPI, vol. 10(7), pages 1-19, June.
    15. Long, Dongteng & Wang, Wei & Yao, Chu & Liu, Jizhen, 2017. "An experiment-based model of condensate throttling and its utilization in load control of 1000 MW power units," Energy, Elsevier, vol. 133(C), pages 941-954.
    16. Kong, Xiaobing & Liu, Xiangjie & Lee, Kwang Y., 2015. "Nonlinear multivariable hierarchical model predictive control for boiler-turbine system," Energy, Elsevier, vol. 93(P1), pages 309-322.
    17. Dong, Changgui & Qi, Ye & Dong, Wenjuan & Lu, Xi & Liu, Tianle & Qian, Shuai, 2018. "Decomposing driving factors for wind curtailment under economic new normal in China," Applied Energy, Elsevier, vol. 217(C), pages 178-188.
    18. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beiron, Johanna & Montañés, Rubén M. & Normann, Fredrik & Johnsson, Filip, 2020. "Combined heat and power operational modes for increased product flexibility in a waste incineration plant," Energy, Elsevier, vol. 202(C).
    2. Garcet, J. & De Meulenaere, R. & Blondeau, J., 2022. "Enabling flexible CHP operation for grid support by exploiting the DHN thermal inertia," Applied Energy, Elsevier, vol. 316(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Jing, Sitong & Sun, Yang & Liu, Jizhen & Niu, Yuguang & Zeng, Deliang & Cui, Can, 2019. "Combined heat and power control considering thermal inertia of district heating network for flexible electric power regulation," Energy, Elsevier, vol. 169(C), pages 988-999.
    2. Wandong Zheng & Jay J. Hennessy & Hailong Li, 2020. "Reducing renewable power curtailment and CO2 emissions in China through district heating storage," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    3. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
    4. Wei Wei & Yaping Shi & Kai Hou & Lei Guo & Linyu Wang & Hongjie Jia & Jianzhong Wu & Chong Tong, 2020. "Coordinated Flexibility Scheduling for Urban Integrated Heat and Power Systems by Considering the Temperature Dynamics of Heating Network," Energies, MDPI, vol. 13(12), pages 1-23, June.
    5. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.
    6. Wang, Di & Liu, Deying & Wang, Chaonan & Zhou, Yunlong & Li, Xiaoli & Yang, Mei, 2022. "Flexibility improvement method of coal-fired thermal power plant based on the multi-scale utilization of steam turbine energy storage," Energy, Elsevier, vol. 239(PD).
    7. Skalyga, Mikhail & Wu, Qiuwei & Zhang, Menglin, 2021. "Uncertainty-fully-aware coordinated dispatch of integrated electricity and heat system," Energy, Elsevier, vol. 224(C).
    8. Cao, Lihua & Wang, Zhanzhou & Pan, Tongyang & Dong, Enfu & Hu, Pengfei & Liu, Miao & Ma, Tingshan, 2021. "Analysis on wind power accommodation ability and coal consumption of heat–power decoupling technologies for CHP units," Energy, Elsevier, vol. 231(C).
    9. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    10. Hao, Ling & Wei, Mingshan & Xu, Fei & Yang, Xiaochen & Meng, Jia & Song, Panpan & Min, Yong, 2020. "Study of operation strategies for integrating ice-storage district cooling systems into power dispatch for large-scale hydropower utilization," Applied Energy, Elsevier, vol. 261(C).
    11. Chen, Xi & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming & Yang, Ming & He, Suoying & Liang, Jun, 2020. "Optimal operation of integrated energy system considering dynamic heat-gas characteristics and uncertain wind power," Energy, Elsevier, vol. 198(C).
    12. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
    13. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2018. "Improving wind power integration by a novel short-term dispatch model based on free heat storage and exhaust heat recycling," Energy, Elsevier, vol. 160(C), pages 940-953.
    14. Chen, Yuwei & Guo, Qinglai & Sun, Hongbin & Li, Zhengshuo & Pan, Zhaoguang & Wu, Wenchuan, 2019. "A water mass method and its application to integrated heat and electricity dispatch considering thermal inertias," Energy, Elsevier, vol. 181(C), pages 840-852.
    15. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    16. Wu, Zhenlong & Li, Donghai & Xue, Yali & Chen, YangQuan, 2019. "Gain scheduling design based on active disturbance rejection control for thermal power plant under full operating conditions," Energy, Elsevier, vol. 185(C), pages 744-762.
    17. Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
    18. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    19. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    20. Li, Xue & Li, Wenming & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Li, Guoqing, 2020. "Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings," Applied Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2815-:d:176673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.