IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v78y2014icp235-246.html
   My bibliography  Save this article

Integrated electricity and heating demand-side management for wind power integration in China

Author

Listed:
  • Yang, Yulong
  • Wu, Kai
  • Long, Hongyu
  • Gao, Jianchao
  • Yan, Xu
  • Kato, Takeyoshi
  • Suzuoki, Yasuo

Abstract

The wind power generation system will play a crucial role for developing the energy conservative, environmentally friendly, and sustainable electric power system in China. However, the intermittency and unpredictability of wind power has been an obstacle to the deployment of wind power generation, especially in the winter of northern China. In northern China, a combined heat and power (CHP) unit has been widely utilized as a heat and electricity source.

Suggested Citation

  • Yang, Yulong & Wu, Kai & Long, Hongyu & Gao, Jianchao & Yan, Xu & Kato, Takeyoshi & Suzuoki, Yasuo, 2014. "Integrated electricity and heating demand-side management for wind power integration in China," Energy, Elsevier, vol. 78(C), pages 235-246.
  • Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:235-246
    DOI: 10.1016/j.energy.2014.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214011578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Dayang & Liang, Jun & Han, Xueshan & Zhao, Jianguo, 2011. "Profiling the regional wind power fluctuation in China," Energy Policy, Elsevier, vol. 39(1), pages 299-306, January.
    2. Coughlin, Katie & Murthi, Aditya & Eto, Joseph, 2014. "Multi-scale analysis of wind power and load time series data," Renewable Energy, Elsevier, vol. 68(C), pages 494-504.
    3. Khalid, M. & Savkin, A.V., 2010. "A model predictive control approach to the problem of wind power smoothing with controlled battery storage," Renewable Energy, Elsevier, vol. 35(7), pages 1520-1526.
    4. Thorin, Eva & Brand, Heike & Weber, Christoph, 2005. "Long-term optimization of cogeneration systems in a competitive market environment," Applied Energy, Elsevier, vol. 81(2), pages 152-169, June.
    5. Hedegaard, Karsten & Mathiesen, Brian Vad & Lund, Henrik & Heiselberg, Per, 2012. "Wind power integration using individual heat pumps – Analysis of different heat storage options," Energy, Elsevier, vol. 47(1), pages 284-293.
    6. Hongyu Long & Ruilin Xu & Jianjun He, 2011. "Incorporating the Variability of Wind Power with Electric Heat Pumps," Energies, MDPI, vol. 4(10), pages 1-15, October.
    7. Mady, Carlos Eduardo Keutenedjian & Albuquerque, Cyro & Fernandes, Tiago Lazzaretti & Hernandez, Arnaldo José & Saldiva, Paulo Hilário Nascimento & Yanagihara, Jurandir Itizo & de Oliveira, Silvio, 2013. "Exergy performance of human body under physical activities," Energy, Elsevier, vol. 62(C), pages 370-378.
    8. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    9. Abbaspour, M. & Satkin, M. & Mohammadi-Ivatloo, B. & Hoseinzadeh Lotfi, F. & Noorollahi, Y., 2013. "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)," Renewable Energy, Elsevier, vol. 51(C), pages 53-59.
    10. Mitra, Sumit & Sun, Lige & Grossmann, Ignacio E., 2013. "Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices," Energy, Elsevier, vol. 54(C), pages 194-211.
    11. Gutiérrez-Martín, F. & Da Silva-Álvarez, R.A. & Montoro-Pintado, P., 2013. "Effects of wind intermittency on reduction of CO2 emissions: The case of the Spanish power system," Energy, Elsevier, vol. 61(C), pages 108-117.
    12. Zhao, Xiaoli & Wu, Longli & Zhang, Sufang, 2013. "Joint environmental and economic power dispatch considering wind power integration: Empirical analysis from Liaoning Province of China," Renewable Energy, Elsevier, vol. 52(C), pages 260-265.
    13. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    2. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2018. "Improving wind power integration by a novel short-term dispatch model based on free heat storage and exhaust heat recycling," Energy, Elsevier, vol. 160(C), pages 940-953.
    3. Sorknæs, Peter & Lund, Henrik & Andersen, Anders N., 2015. "Future power market and sustainable energy solutions – The treatment of uncertainties in the daily operation of combined heat and power plants," Applied Energy, Elsevier, vol. 144(C), pages 129-138.
    4. Hongyu Long & Kunyao Xu & Ruilin Xu & Jianjun He, 2012. "More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China," Energies, MDPI, vol. 5(9), pages 1-16, August.
    5. Hendrik Butemann & Katja Schimmelpfeng, 2020. "Long-term electricity production planning of a flexible biogas plant considering wear and tear," Journal of Business Economics, Springer, vol. 90(9), pages 1289-1313, November.
    6. Zhao, Xiaoli & Chen, Haoran & Liu, Suwei & Ye, Xiaomei, 2020. "Economic & environmental effects of priority dispatch of renewable energy considering fluctuating power output of coal-fired units," Renewable Energy, Elsevier, vol. 157(C), pages 695-707.
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    9. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2015. "Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch," Renewable Energy, Elsevier, vol. 83(C), pages 188-202.
    10. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu & Guan, Zhiqiang, 2019. "Optimizing for clean-heating improvements in a district energy system with high penetration of wind power," Energy, Elsevier, vol. 175(C), pages 1085-1099.
    11. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
    12. Quan Lyu & Haoyan Gong & Nan Yang & Xiandong Xu & Na Zhang & Haixia Wang, 2019. "An Evaluation Method of Wind Power Integration in Power Systems with Flexible Combined Heat and Power Plant," Energies, MDPI, vol. 12(21), pages 1-17, October.
    13. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2015. "A simplified optimization model to short-term electricity planning," Energy, Elsevier, vol. 93(P2), pages 2126-2135.
    14. Muche, Thomas & Höge, Christin & Renner, Oliver & Pohl, Ralf, 2016. "Profitability of participation in control reserve market for biomass-fueled combined heat and power plants," Renewable Energy, Elsevier, vol. 90(C), pages 62-76.
    15. Chenghong Gu & Da Xie & Junbo Sun & Xitian Wang & Qian Ai, 2015. "Optimal Operation of Combined Heat and Power System Based on Forecasted Energy Prices in Real-Time Markets," Energies, MDPI, vol. 8(12), pages 1-16, December.
    16. Ping Li & Haixia Wang & Quan Lv & Weidong Li, 2017. "Combined Heat and Power Dispatch Considering Heat Storage of Both Buildings and Pipelines in District Heating System for Wind Power Integration," Energies, MDPI, vol. 10(7), pages 1-19, June.
    17. Kim, Jong Suk & Edgar, Thomas F., 2014. "Optimal scheduling of combined heat and power plants using mixed-integer nonlinear programming," Energy, Elsevier, vol. 77(C), pages 675-690.
    18. Liang, Zhengtang & Liang, Jun & Zhang, Li & Wang, Chengfu & Yun, Zhihao & Zhang, Xu, 2015. "Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis," Applied Energy, Elsevier, vol. 159(C), pages 51-61.
    19. Ondeck, Abigail D. & Edgar, Thomas F. & Baldea, Michael, 2018. "Impact of rooftop photovoltaics and centralized energy storage on the design and operation of a residential CHP system," Applied Energy, Elsevier, vol. 222(C), pages 280-299.
    20. Hedegaard, Karsten & Balyk, Olexandr, 2013. "Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks," Energy, Elsevier, vol. 63(C), pages 356-365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:235-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.