IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v52y2013icp260-265.html
   My bibliography  Save this article

Joint environmental and economic power dispatch considering wind power integration: Empirical analysis from Liaoning Province of China

Author

Listed:
  • Zhao, Xiaoli
  • Wu, Longli
  • Zhang, Sufang

Abstract

Liaoning province, located in Northeast China – one of China's three most wind-rich areas, possesses abundant wind resources. Along with China's rapid development of wind power in recent years, the issue of how to integrate more wind power to the grid, and how to balance the conflict between pollutant and GHG emission reduction and economic cost increase by dispatch model adjustment becomes a big challenge. Based on the GAMS simulation method, by using the real data of thermal power units, wind power and hydropower generation, and load in Liaoning province, this paper studies a joint environmental and economic power dispatch considering wind power integration at valley load and peak load. The results show that the pumped storage power station played an important role in promoting wind power integration. And the power dispatch across thermal power, wind power and hydropower is more favorable than the power dispatch only across thermal power and wind power in terms of reducing pollutant and GHG emission. It is also proved that a comparatively better environmental improvement can be made at a relatively lower economic loss by a joint environmental and economic dispatch across thermal, wind and hydropower.

Suggested Citation

  • Zhao, Xiaoli & Wu, Longli & Zhang, Sufang, 2013. "Joint environmental and economic power dispatch considering wind power integration: Empirical analysis from Liaoning Province of China," Renewable Energy, Elsevier, vol. 52(C), pages 260-265.
  • Handle: RePEc:eee:renene:v:52:y:2013:i:c:p:260-265
    DOI: 10.1016/j.renene.2012.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112006957
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Göransson, Lisa & Johnsson, Filip, 2009. "Dispatch modeling of a regional power generation system – Integrating wind power," Renewable Energy, Elsevier, vol. 34(4), pages 1040-1049.
    2. Yu, Xiao & Qu, Hang, 2010. "Wind power in China--Opportunity goes with challenge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2232-2237, October.
    3. Liao, Gwo-Ching, 2011. "A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power," Energy, Elsevier, vol. 36(2), pages 1018-1029.
    4. Boqiang, Ren & Chuanwen, Jiang, 2009. "A review on the economic dispatch and risk management considering wind power in the power market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2169-2174, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xiaoli & Chen, Haoran & Liu, Suwei & Ye, Xiaomei, 2020. "Economic & environmental effects of priority dispatch of renewable energy considering fluctuating power output of coal-fired units," Renewable Energy, Elsevier, vol. 157(C), pages 695-707.
    2. Qi, Ye & Dong, Wenjuan & Dong, Changgui & Huang, Caiwei, 2019. "Understanding institutional barriers for wind curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 476-486.
    3. Chen, H. & Chyong CK. & Kang, J-N. & Wei Y-M., 2018. "Economic dispatch in the electricity sector in China: potential benefits and challenges ahead," Cambridge Working Papers in Economics 1836, Faculty of Economics, University of Cambridge.
    4. Jin, Jingliang & Zhou, Dequn & Zhou, Peng & Miao, Zhuang, 2014. "Environmental/economic power dispatch with wind power," Renewable Energy, Elsevier, vol. 71(C), pages 234-242.
    5. Xiong, Weiming & Wang, Yu & Mathiesen, Brian Vad & Zhang, Xiliang, 2016. "Case study of the constraints and potential contributions regarding wind curtailment in Northeast China," Energy, Elsevier, vol. 110(C), pages 55-64.
    6. Yang, Yulong & Wu, Kai & Long, Hongyu & Gao, Jianchao & Yan, Xu & Kato, Takeyoshi & Suzuoki, Yasuo, 2014. "Integrated electricity and heating demand-side management for wind power integration in China," Energy, Elsevier, vol. 78(C), pages 235-246.
    7. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2015. "Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch," Renewable Energy, Elsevier, vol. 83(C), pages 188-202.
    8. Guoliang Luo & Erli Dan & Xiaochun Zhang & Yiwei Guo, 2018. "Why the Wind Curtailment of Northwest China Remains High," Sustainability, MDPI, Open Access Journal, vol. 10(2), pages 1-1, February.
    9. Li Han & Rongchang Zhang & Xuesong Wang & Yu Dong, 2018. "Multi-Time Scale Rolling Economic Dispatch for Wind/Storage Power System Based on Forecast Error Feature Extraction," Energies, MDPI, Open Access Journal, vol. 11(8), pages 1-1, August.
    10. Wei, Yi-Ming & Chen, Hao & Chyong, Chi Kong & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun, 2018. "Economic dispatch savings in the coal-fired power sector: An empirical study of China," Energy Economics, Elsevier, vol. 74(C), pages 330-342.
    11. Dong, Changgui & Qi, Ye & Dong, Wenjuan & Lu, Xi & Liu, Tianle & Qian, Shuai, 2018. "Decomposing driving factors for wind curtailment under economic new normal in China," Applied Energy, Elsevier, vol. 217(C), pages 178-188.

    More about this item

    Keywords

    Power dispatch; Wind power; China;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:52:y:2013:i:c:p:260-265. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.