TCN-GRU Based on Attention Mechanism for Solar Irradiance Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Deveci, Muhammet & Pamucar, Dragan & Oguz, Elif, 2022. "Floating photovoltaic site selection using fuzzy rough numbers based LAAW and RAFSI model," Applied Energy, Elsevier, vol. 324(C).
- Liu, Bingchun & Huo, Xiankai, 2024. "Prediction of Photovoltaic power generation and analyzing of carbon emission reduction capacity in China," Renewable Energy, Elsevier, vol. 222(C).
- Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
- Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dong, Shiqian & Di, Yanqiang & Gao, Yafeng & Long, He & Fan, Zhixuan & Guan, Jingxuan & Han, Lijun & Wang, Yingming, 2025. "Multiple operational strategies investigations of the PV/T collectors based on 3 days ahead hourly radiation prediction," Applied Energy, Elsevier, vol. 377(PA).
- Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
- Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
- Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
- Haspolat, Emre & Cicek, Doga Derman & Gokmener, Serkan & Melek, Abiddin Berhan & Deveci, Muhammet & Oguz, Elif, 2024. "Site selection of floating photovoltaic systems on hydropower reservoirs using fuzzy sine trigonometric decision-making model: Turkey as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
- Han, Jen-Yu & Vohnicky, Petr, 2022. "An optimized approach for mapping solar irradiance in a mid-low latitude region based on a site-adaptation technique using Himawari-8 satellite imageries," Renewable Energy, Elsevier, vol. 187(C), pages 603-617.
- Christos Kyriakos & Manolis Vavalis, 2023. "Business Intelligence through Machine Learning from Satellite Remote Sensing Data," Future Internet, MDPI, vol. 15(11), pages 1-29, October.
- Wang, Weizhong & Chen, Yu & Wang, Yi & Deveci, Muhammet & Moslem, Sarbast & Coffman, D'Maris, 2024. "Unveiling the implementation barriers to the digital transformation in the energy sector using the Fermatean cubic fuzzy method," Applied Energy, Elsevier, vol. 360(C).
- Acikgoz, Hakan, 2022. "A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting," Applied Energy, Elsevier, vol. 305(C).
- Gou, Liangjie & Yang, Zhaozhong & Min, Chao & Yi, Duo & Li, Xiaogang & Kong, Bing, 2024. "A novel domain adaptation method with physical constraints for shale gas production forecasting," Applied Energy, Elsevier, vol. 371(C).
- Fan, Guo-Feng & Feng, Yi-Wen & Peng, Li-Ling & Huang, Hsin-Pou & Hong, Wei-Chiang, 2024. "Uncertainty analysis of photovoltaic power generation system and intelligent coupling prediction," Renewable Energy, Elsevier, vol. 234(C).
- Li, You & Zhou, Weisheng & Wang, Yafei & Miao, Sheng & Yao, Wanxiang & Gao, Weijun, 2025. "Interpretable deep learning framework for hourly solar radiation forecasting based on decomposing multi-scale variations," Applied Energy, Elsevier, vol. 377(PA).
- Oubah Isman Okieh & Serhat Seker & Seckin Gokce & Martin Dennenmoser, 2024. "An Enhanced Forecasting Method of Daily Solar Irradiance in Southwestern France: A Hybrid Nonlinear Autoregressive with Exogenous Inputs with Long Short-Term Memory Approach," Energies, MDPI, vol. 17(16), pages 1-21, August.
- Wang, Zhijin & Liu, Xiufeng & Huang, Yaohui & Zhang, Peisong & Fu, Yonggang, 2023. "A multivariate time series graph neural network for district heat load forecasting," Energy, Elsevier, vol. 278(PA).
- Gao, Yuan & Hu, Zehuan & Shi, Shanrui & Chen, Wei-An & Liu, Mingzhe, 2024. "Adversarial discriminative domain adaptation for solar radiation prediction: A cross-regional study for zero-label transfer learning in Japan," Applied Energy, Elsevier, vol. 359(C).
- Bingchun Liu & Xia Zhang & Yasen Zhou & Tiezhu Yuan, 2025. "Conversion Potential of Renewable Energy Surplus to Methane in China Based on Power Generation Forecasting," Sustainability, MDPI, vol. 17(7), pages 1-20, March.
- Sankara kumar, Sundarapandian & Karthick, Alagar & Shankar, R. & Dharmaraj, Ganeshaperumal, 2024. "Energy forecasting of the building integrated photovoltaic system based on deep learning dragonfly-firefly algorithm," Energy, Elsevier, vol. 308(C).
- Mati, Sagiru & Baita, Abubakar Jamilu & Ismael, Goran Yousif & Abdullahi, Salisu Garba & Samour, Ahmed & Ozsahin, Dilber Uzun, 2024. "Enhancing CO2 emissions prediction in Africa: A novel approach integrating enviroeconomic factors and nature-inspired neural network in the presence of unit root," Renewable Energy, Elsevier, vol. 237(PA).
- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
- Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
More about this item
Keywords
photovoltaic prediction; photovoltaic power plants site selection; deep neural networks; deep convolutional neural networks; map distribution characteristics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5767-:d:1523808. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.