TCN-GRU Based on Attention Mechanism for Solar Irradiance Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).
- Deveci, Muhammet & Pamucar, Dragan & Oguz, Elif, 2022. "Floating photovoltaic site selection using fuzzy rough numbers based LAAW and RAFSI model," Applied Energy, Elsevier, vol. 324(C).
- Liu, Bingchun & Huo, Xiankai, 2024. "Prediction of Photovoltaic power generation and analyzing of carbon emission reduction capacity in China," Renewable Energy, Elsevier, vol. 222(C).
- Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
- Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
- Yin, Linfei & Zhou, Hang, 2024. "Modal decomposition integrated model for ultra-supercritical coal-fired power plant reheater tube temperature multi-step prediction," Energy, Elsevier, vol. 292(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
- Hu, Zehuan & Gao, Yuan & Sun, Luning & Mae, Masayuki & Imaizumi, Taiji, 2024. "Self-learning dynamic graph neural network with self-attention based on historical data and future data for multi-task multivariate residential air conditioning forecasting," Applied Energy, Elsevier, vol. 364(C).
- Dong, Shiqian & Di, Yanqiang & Gao, Yafeng & Long, He & Fan, Zhixuan & Guan, Jingxuan & Han, Lijun & Wang, Yingming, 2025. "Multiple operational strategies investigations of the PV/T collectors based on 3 days ahead hourly radiation prediction," Applied Energy, Elsevier, vol. 377(PA).
- Rui Luo & Jinpei Liu & Piao Wang & Zhifu Tao & Huayou Chen, 2024. "A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 366-390, March.
- Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Automatic Selection of Temperature Variables for Short-Term Load Forecasting," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
- Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
- Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
- Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
- Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
- Hu, Rong & Zhou, Kaile & Lu, Xinhui, 2025. "Integrated loads forecasting with absence of crucial factors," Energy, Elsevier, vol. 322(C).
- Haspolat, Emre & Cicek, Doga Derman & Gokmener, Serkan & Melek, Abiddin Berhan & Deveci, Muhammet & Oguz, Elif, 2024. "Site selection of floating photovoltaic systems on hydropower reservoirs using fuzzy sine trigonometric decision-making model: Turkey as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
- Han, Jen-Yu & Vohnicky, Petr, 2022. "An optimized approach for mapping solar irradiance in a mid-low latitude region based on a site-adaptation technique using Himawari-8 satellite imageries," Renewable Energy, Elsevier, vol. 187(C), pages 603-617.
- Han, Jen-Yu & Li, Sin-Yi & Chen, Yi-Chien, 2025. "Estimation of solar photovoltaic efficiency under the urban heat island effect," Renewable Energy, Elsevier, vol. 242(C).
- Christos Kyriakos & Manolis Vavalis, 2023. "Business Intelligence through Machine Learning from Satellite Remote Sensing Data," Future Internet, MDPI, vol. 15(11), pages 1-29, October.
- Wang, Weizhong & Chen, Yu & Wang, Yi & Deveci, Muhammet & Moslem, Sarbast & Coffman, D'Maris, 2024. "Unveiling the implementation barriers to the digital transformation in the energy sector using the Fermatean cubic fuzzy method," Applied Energy, Elsevier, vol. 360(C).
- Luo, Jie & Wen, Chao & Peng, Qiyuan & Qin, Yong & Huang, Ping, 2023. "Forecasting the effect of traffic control strategies in railway systems: A hybrid machine learning method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
- Acikgoz, Hakan, 2022. "A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting," Applied Energy, Elsevier, vol. 305(C).
- Jiakang Wang & Hui Liu & Guangji Zheng & Ye Li & Shi Yin, 2023. "Short-Term Load Forecasting Based on Outlier Correction, Decomposition, and Ensemble Reinforcement Learning," Energies, MDPI, vol. 16(11), pages 1-16, May.
- Han Qiu & Rong Hu & Jiaqing Chen & Zihao Yuan, 2025. "Short-Term Electricity Load Forecasting Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Improved Sparrow Search Algorithm–Convolutional Neural Network–Bidirectional Lon," Mathematics, MDPI, vol. 13(5), pages 1-32, February.
- Gou, Liangjie & Yang, Zhaozhong & Min, Chao & Yi, Duo & Li, Xiaogang & Kong, Bing, 2024. "A novel domain adaptation method with physical constraints for shale gas production forecasting," Applied Energy, Elsevier, vol. 371(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5767-:d:1523808. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.