IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v327y2025ics0360544225020882.html
   My bibliography  Save this article

Flexible peak shaving in coal-fired power plants: A comprehensive review of current challenges, recent advances, and future perspectives

Author

Listed:
  • Wu, Chunlei
  • Wang, Chao
  • Hou, Zongyu
  • Wang, Zhe

Abstract

Grid stability amidst the global energy transition and the pursuit of carbon neutrality is critically dependent on enhancing the flexible peak-shaving capability of Coal-Fired Power Plants (CFPPs). This review highlights recent advances in improving CFPP flexibility and identifies key challenges, including equipment limitations, inadequate control adaptability, and escalating environmental and economic pressures. These factors contribute to operational instability, reduced efficiency, and increased emissions during rapid and deep load fluctuations. Hybrid modeling approaches, achieving high prediction accuracy across full operational processes and broad load ranges with an average error of 0.79 %, support precise peak shaving optimization. Technologies such as low-load stable combustion, heat-power decoupling, and energy storage integration have facilitated minimum loads of approximately 15 %, while advanced intelligent control systems, in coordination with energy storage, significantly accelerate response times, enabling rapid responses within seconds to minutes. Despite these advancements, challenges remain in system coordination, equipment dynamics, and investment feasibility. Future efforts should focus on the development of digital twin frameworks, multi-scale optimization techniques, and integrated techno-economic strategies to propel CFPPs toward cleaner, smarter, and more resilient operations.

Suggested Citation

  • Wu, Chunlei & Wang, Chao & Hou, Zongyu & Wang, Zhe, 2025. "Flexible peak shaving in coal-fired power plants: A comprehensive review of current challenges, recent advances, and future perspectives," Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225020882
    DOI: 10.1016/j.energy.2025.136446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225020882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225020882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.