IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v279y2023ics0360544223015098.html
   My bibliography  Save this article

Application of plasma burners for char combustion in a pulverized coal-fired (PC) boiler – Experimental and numerical analysis

Author

Listed:
  • Pawlak-Kruczek, Halina
  • Mularski, Jakub
  • Ostrycharczyk, Michał
  • Czerep, Michał
  • Baranowski, Marcin
  • Mączka, Tadeusz
  • Sadowski, Krzysztof
  • Hulisz, Patryk

Abstract

This study considers the combustion of pulverized coal with unburned char recovered from ash of the industrial boiler. The concept of char combustion with coal is implemented by installing two plasma burners on the front wall of the combustion chamber. The main objective is to improve the boiler's efficiency by reducing the amount of unburned fuel. The behavior of the combustion process is investigated using CFD modeling of the combustion chamber with tangentially-fired burners and two plasma burners. Thermogravimetric analysis and laboratory-scale tests in a drop tube furnace are performed to obtain the combustion characteristics of the investigated char and, eventually, to assess the validity of co-firing with coal the unburned char. The CFD simulation of the non-retrofitted boiler with twelve pulverized-fired burners results in the excessive movement of coal particle streams toward the chamber walls outside of the designed swirl diameter caused by a high centrifugal force, thereby contributing to a decreased level of fuel burnout. The CFD results with plasma burners indicated that the swirl diameter is reduced improving the degree of mixing resulting in a more uniform temperature and velocity distributions. The average temperature at the combustion chamber outlet increases by approximately 40 °Creaching 1260 °C.

Suggested Citation

  • Pawlak-Kruczek, Halina & Mularski, Jakub & Ostrycharczyk, Michał & Czerep, Michał & Baranowski, Marcin & Mączka, Tadeusz & Sadowski, Krzysztof & Hulisz, Patryk, 2023. "Application of plasma burners for char combustion in a pulverized coal-fired (PC) boiler – Experimental and numerical analysis," Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223015098
    DOI: 10.1016/j.energy.2023.128115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223015098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Peizhe & Xu, Zaifeng & Yao, Dong & Qi, Huaqing & Zhu, Zhaoyou & Wang, Yinglong & Li, Xin & Liu, Zhiqiang & Yang, Sheng, 2022. "Life cycle water footprint and carbon footprint analysis of municipal sludge plasma gasification process," Energy, Elsevier, vol. 261(PB).
    2. Ibrahimoglu, Beycan & Yilmazoglu, M. Zeki & Cucen, Ahmet, 2016. "Numerical modeling of repowering of a thermal power plant boiler using plasma combustion systems," Energy, Elsevier, vol. 103(C), pages 38-48.
    3. Chu, Chu & Wang, Ping & Boré, Abdoulaye & Ma, Wenchao & Chen, Guanyi & Wang, Pan, 2023. "Thermal plasma co-gasification of polyvinylchloride and biomass mixtures under steam atmospheres: Gasification characteristics and chlorine release behavior," Energy, Elsevier, vol. 262(PB).
    4. Kuo, Po-Chih & Illathukandy, Biju & Wu, Wei & Chang, Jo-Shu, 2021. "Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass," Energy, Elsevier, vol. 223(C).
    5. Paulino, Regina Franciélle Silva & Essiptchouk, Alexei Mikhailovich & Silveira, José Luz, 2020. "The use of syngas from biomedical waste plasma gasification systems for electricity production in internal combustion: Thermodynamic and economic issues," Energy, Elsevier, vol. 199(C).
    6. Chen, Heng & Li, Jiarui & Li, Tongyu & Xu, Gang & Jin, Xi & Wang, Min & Liu, Tong, 2022. "Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant," Energy, Elsevier, vol. 245(C).
    7. Pan, Peiyuan & Peng, Weike & Li, Jiarui & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation," Energy, Elsevier, vol. 238(PC).
    8. Zhang, Teng & Zhang, Jingfeng & Yu, Yunsong & Zhang, Zaoxiao & Wang, Geoff G.X., 2023. "Up-rotating plasma gasifier for waste treatment to produce syngas and intensified by carbon dioxide," Energy, Elsevier, vol. 270(C).
    9. Wang, Yuting & Chen, Heng & Qiao, Shichao & Pan, Peiyuan & Xu, Gang & Dong, Yuehong & Jiang, Xue, 2023. "A novel methanol-electricity cogeneration system based on the integration of water electrolysis and plasma waste gasification," Energy, Elsevier, vol. 267(C).
    10. Mazzoni, Luca & Janajreh, Isam & Elagroudy, Sherien & Ghenai, Chaouki, 2020. "Modeling of plasma and entrained flow co-gasification of MSW and petroleum sludge," Energy, Elsevier, vol. 196(C).
    11. Ismail, Tamer M. & Monteiro, Eliseu & Ramos, Ana & El-Salam, M. Abd & Rouboa, Abel, 2019. "An Eulerian model for forest residues gasification in a plasma gasifier," Energy, Elsevier, vol. 182(C), pages 1069-1083.
    12. Paulino, Regina Franciélle Silva & Essiptchouk, Alexei Mikhailovich & Costa, Lucas Pamplona Cardozo & Silveira, José Luz, 2022. "Thermodynamic analysis of biomedical waste plasma gasification," Energy, Elsevier, vol. 244(PA).
    13. Pawlak-Kruczek, Halina & Ostrycharczyk, Michał & Czerep, Michał & Baranowski, Marcin & Zgóra, Jacek, 2015. "Examinations of the process of hard coal and biomass blend combustion in OEA (oxygen enriched atmosphere)," Energy, Elsevier, vol. 92(P1), pages 40-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolegenova, Saltanat & Askarova, Аliya & Georgiev, Aleksandar & Nugymanova, Aizhan & Maximov, Valeriy & Bolegenova, Symbat & Mamedov, Bolat, 2023. "The use of plasma technologies to optimize fuel combustion processes and reduce emissions of harmful substances," Energy, Elsevier, vol. 277(C).
    2. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    3. Chen, Heng & Li, Jiarui & Li, Tongyu & Xu, Gang & Jin, Xi & Wang, Min & Liu, Tong, 2022. "Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant," Energy, Elsevier, vol. 245(C).
    4. Pan, Peiyuan & Peng, Weike & Li, Jiarui & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation," Energy, Elsevier, vol. 238(PC).
    5. Caferra, Rocco & D'Adamo, Idiano & Morone, Piergiuseppe, 2023. "Wasting energy or energizing waste? The public acceptance of waste-to-energy technology," Energy, Elsevier, vol. 263(PE).
    6. Zhang, Teng & Zhang, Jingfeng & Yu, Yunsong & Zhang, Zaoxiao & Wang, Geoff G.X., 2023. "Up-rotating plasma gasifier for waste treatment to produce syngas and intensified by carbon dioxide," Energy, Elsevier, vol. 270(C).
    7. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    8. Lv, Jiayang & Wang, Yinan & Chen, Heng & Li, Wenchao & Pan, Peiyuan & Wu, Lining & Xu, Gang & Zhai, Rongrong, 2023. "Thermodynamic and economic analysis of a conceptual system combining medical waste plasma gasification, SOFC, sludge gasification, supercritical CO2 cycle, and desalination," Energy, Elsevier, vol. 282(C).
    9. Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
    10. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
    11. Ismail, Tamer M. & Kobayashi, Yasunori & Yoshikawa, Kunio & Lu, Ding & Kobori, Takahiro & Araki, Kuniomi & Kanazawa, Kiryu & Takahashi, Fumitake & Abd El-Salam, M., 2020. "Numerical investigation on the effect of electron injected air for thermal decomposition of solid waste," Applied Energy, Elsevier, vol. 269(C).
    12. Vlasopoulos, Antonis & Malinauskaite, Jurgita & Żabnieńska-Góra, Alina & Jouhara, Hussam, 2023. "Life cycle assessment of plastic waste and energy recovery," Energy, Elsevier, vol. 277(C).
    13. Chen, Xiaoling & Zhang, Yongxing & Xu, Baoshen & Li, Yifan, 2022. "A simple model for estimation of higher heating value of oily sludge," Energy, Elsevier, vol. 239(PA).
    14. Ismail, Tamer M. & Yoshikawa, Kunio & Kobori, Takahiro & Kobayashi, Yoshinori & Kanazawa, Kiryu & Takahashi, Fumitake & Abd El-Salam, M., 2022. "Effect of electron injected air on the gasification performance of biomass," Applied Energy, Elsevier, vol. 311(C).
    15. Gyeong-Min Kim & Jong-Pil Kim & Kevin Yohanes Lisandy & Chung-Hwan Jeon, 2017. "Experimental Model Development of Oxygen-Enriched Combustion Kinetics on Porous Coal Char and Non-Porous Graphite," Energies, MDPI, vol. 10(9), pages 1-14, September.
    16. Chien, FengSheng & Ngo, Quang-Thanh & Hsu, Ching-Chi & Chau, Ka Yin & Mohsin, Muhammad, 2021. "Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification," MPRA Paper 109667, University Library of Munich, Germany.
    17. Liu, Miaomiao & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2023. "Operational flexibility and operation optimization of CHP units supplying electricity and two-pressure steam," Energy, Elsevier, vol. 263(PE).
    18. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Liu, Hanqiao & Qiao, Haoyu & Liu, Shiqi & Wei, Guoxia & Zhao, Hailong & Li, Kai & Weng, Fangkai, 2023. "Energy, environment and economy assessment of sewage sludge incineration technologies in China," Energy, Elsevier, vol. 264(C).
    20. Castillo Santiago, York & Martínez González, Aldemar & Venturini, Osvaldo J. & Sphaier, Leandro A. & Ocampo Batlle, Eric A., 2022. "Energetic and environmental assessment of oil sludge use in a gasifier/gas microturbine system," Energy, Elsevier, vol. 244(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223015098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.