IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v321y2025ics036054422501165x.html
   My bibliography  Save this article

Dynamic characterization and predictive control of the steam-molten salt heat exchanger in charging process

Author

Listed:
  • Cui, Zhipeng
  • Jing, Hao
  • Wang, Dengliang
  • Chen, Weixiong
  • Niu, Yuguang

Abstract

The integration of molten salt heat storage offers a promising solution for enhancing the operational flexibility of coal-fired power plants. In this study, a predictive control system was developed for the molten salt charging process. The aim of the control system was to adapt promptly to variations in unit load while maintaining precise control of the molten salt temperature. The research begins with the design of heat transfer equipment specifically tailored to meet the requirements of peak load regulation. Subsequently, a dynamic model of a thermal power unit integrated with a molten salt heat storage system is established to analyze the transient characteristics of the charging process. To optimize system performance, a multi-model dynamic matrix predictive control strategy is proposed, facilitating the coordinated regulation of heat storage extraction steam and molten salt flow rates. Performance evaluations indicate maximum control deviations of 0.64 MW in load and 0.85 °C in molten salt temperature, alongside a 27.56-s reduction in load regulation time. These findings highlight that the proposed control system significantly enhances system stability and response speed, demonstrating its potential for practical engineering applications.

Suggested Citation

  • Cui, Zhipeng & Jing, Hao & Wang, Dengliang & Chen, Weixiong & Niu, Yuguang, 2025. "Dynamic characterization and predictive control of the steam-molten salt heat exchanger in charging process," Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:energy:v:321:y:2025:i:c:s036054422501165x
    DOI: 10.1016/j.energy.2025.135523
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422501165X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Yunli & Gao, Naiping & Wang, Tiantian, 2020. "Influence of heat exchanger pinch point on the control strategy of Organic Rankine cycle (ORC)," Energy, Elsevier, vol. 207(C).
    2. Yu, Jianxi & Liu, Pei & Li, Zheng, 2020. "Hybrid modelling and digital twin development of a steam turbine control stage for online performance monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Zhang, Qiang & Jiang, Kaijun, 2024. "Heat transport and load response characteristics of a molten salt solar tower power station engaged in peak regulation," Applied Energy, Elsevier, vol. 371(C).
    4. Wu, Xiao & Wang, Meihong & Lee, Kwang Y., 2020. "Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control," Energy, Elsevier, vol. 206(C).
    5. Chen, Chen & Zhao, Chenyu & Liu, Ming & Wang, Chaoyang & Yan, Junjie, 2024. "Enhancing the load cycling rate of subcritical coal-fired power plants: A novel control strategy based on data-driven feedwater active regulation," Energy, Elsevier, vol. 312(C).
    6. Liu, Zefeng & Wang, Chaoyang & Fan, Jianlin & Liu, Ming & Xing, Yong & Yan, Junjie, 2024. "Enhancing the flexibility and stability of coal-fired power plants by optimizing control schemes of throttling high-pressure extraction steam," Energy, Elsevier, vol. 288(C).
    7. Hübel, Moritz & Meinke, Sebastian & Andrén, Marcus T. & Wedding, Christoffer & Nocke, Jürgen & Gierow, Conrad & Hassel, Egon & Funkquist, Jonas, 2017. "Modelling and simulation of a coal-fired power plant for start-up optimisation," Applied Energy, Elsevier, vol. 208(C), pages 319-331.
    8. Zhang, Qijun & Dong, Jianning & Chen, Heng & Feng, Fuyuan & Xu, Gang & Wang, Xiuyan & Liu, Tong, 2024. "Dynamic characteristics and economic analysis of a coal-fired power plant integrated with molten salt thermal energy storage for improving peaking capacity," Energy, Elsevier, vol. 290(C).
    9. Ma, Tingshan & Li, Zhengkuan & Lv, Kai & Chang, Dongfeng & Hu, Wenshuai & Zou, Ying, 2024. "Design and performance analysis of deep peak shaving scheme for thermal power units based on high-temperature molten salt heat storage system," Energy, Elsevier, vol. 288(C).
    10. Gu, Yujiong & Xu, Jing & Chen, Dongchao & Wang, Zhong & Li, Qianqian, 2016. "Overall review of peak shaving for coal-fired power units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 723-731.
    11. Miao, Lin & Yan, Hui & Liu, Ming, 2024. "Power increase potential of coal-fired power plant assisted by the heat release of the thermal energy storage system: Restrictions and thermodynamic performance," Energy, Elsevier, vol. 312(C).
    12. Xue, Xue & Liu, Xiang & Zhu, Yifan & Yuan, Lei & Zhu, Ying & Jin, Kelang & Zhang, Lei & Zhou, Hao, 2023. "Numerical modeling and parametric study of the heat storage process of the 1.05 MW molten salt furnace," Energy, Elsevier, vol. 282(C).
    13. Jiang, Di & Dong, Zhe, 2020. "Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants," Energy, Elsevier, vol. 198(C).
    14. Hentschel, Julia & Zindler, Henning & Spliethoff, Hartmut, 2017. "Modelling and transient simulation of a supercritical coal-fired power plant: Dynamic response to extended secondary control power output," Energy, Elsevier, vol. 137(C), pages 927-940.
    15. Wang, Yanhong & Hou, Teng & Cui, Changjie & Li, Qi, 2024. "Theoretical modeling of process heat transfer mechanism in U-shaped molten salt heat exchanger," Energy, Elsevier, vol. 308(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Chunlei & Wang, Chao & Hou, Zongyu & Wang, Zhe, 2025. "Flexible peak shaving in coal-fired power plants: A comprehensive review of current challenges, recent advances, and future perspectives," Energy, Elsevier, vol. 327(C).
    2. Chen, Xianhao & Shi, Zhuoyue & Zhang, Ziteng & Zhu, Mingjuan & Oko, Eni & Wu, Xiao, 2024. "Dynamic modeling and comprehensive analysis of an ultra-supercritical coal-fired power plant integrated with post-combustion carbon capture system and molten salt heat storage," Energy, Elsevier, vol. 308(C).
    3. Wang, Yanhong & Hou, Teng & Cui, Changjie & Li, Qi, 2024. "Theoretical modeling of process heat transfer mechanism in U-shaped molten salt heat exchanger," Energy, Elsevier, vol. 308(C).
    4. Zhang, Guangming & Jiang, Kaijun & Wang, Qinghua & Zhang, Qiang & Chen, Jiyu & Xu, Jinliang & Niu, Yuguang, 2025. "Dynamic performance and control strategy of steam generation system for ultra-rapid steam production in coal-fired power plant," Energy, Elsevier, vol. 320(C).
    5. Wang, Zhenpu & Xu, Jing & Ma, Suxia & Zhao, Guanjia & Wang, Jianfei & Gu, Yujiong, 2025. "Comparative investigation on heat pump solutions for peak shaving and heat-power decoupling in combined heat and power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    6. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    7. Fan, Mengyang & Zhao, Yongliang & Liu, Zefeng & Wang, Zhu & Liu, Ming & Yan, Junjie, 2025. "Dynamic modelling and thermo-mechanical performance evaluation of thermal power plants during the background of enhanced operational flexibility," Energy, Elsevier, vol. 318(C).
    8. Liu, Zefeng & Wang, Chaoyang & Fan, Mengyang & Wang, Zhu & Fang, Fang & Liu, Ming & Yan, Junjie, 2025. "Investigation on the allowable load ramping-up rate and wet-to-dry conversion time of a 660 MW supercritical coal-fired power plant with deep peak-shaving work conditions," Energy, Elsevier, vol. 314(C).
    9. Qin, Yuxiao & Liu, Pei & Li, Zheng, 2022. "Multi-timescale hierarchical scheduling of an integrated energy system considering system inertia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    11. Zhang, Yi & Liu, Jinfeng & Yang, Tingting & Liu, Jianbang & Shen, Jiong & Fang, Fang, 2021. "Dynamic modeling and control of direct air-cooling condenser pressure considering couplings with adjacent systems," Energy, Elsevier, vol. 236(C).
    12. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
    13. Alsanousie, Abdurrahman A. & Elsamni, Osama A. & Attia, Abdelhamid E. & Elhelw, Mohamed, 2021. "Transient and troubleshoots management of aged small-scale steam power plants using Aspen Plus Dynamics," Energy, Elsevier, vol. 223(C).
    14. Jiang, Mengxiang & Fan, Huanbao & Kang, Da & Shi, Zhengwei & Wang, Weilai & Qu, Daozhi & Yu, Jingze & Qiu, Tian, 2025. "Thermal inertia and stress of steam separator during variable load process based on fluid-structure-heat coupling," Energy, Elsevier, vol. 322(C).
    15. Liu, Jian & Xu, Yantao & Zhang, Yaning & Shuai, Yong & Li, Bingxi, 2022. "Multi-objective optimization of low temperature cooling water organic Rankine cycle using dual pinch point temperature difference technologies," Energy, Elsevier, vol. 240(C).
    16. Xu, Jing & Cui, Zhipeng & Ma, Suxia & Wang, Xiaowei & Zhang, Zhiyao & Zhang, Guoxia, 2024. "Data based digital twin for operational performance optimization in CFB boilers," Energy, Elsevier, vol. 306(C).
    17. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    18. Zhang, Yifan & Tsai, Yu-Chun & Ren, Xiao & Tuo, Zhaodong & Wang, Wei & Gong, Liang & Hung, Tzu-Chen, 2024. "Experimental study of the external load characteristics on a micro-scale organic Rankine cycle system," Energy, Elsevier, vol. 306(C).
    19. Taler, Jan & Taler, Dawid & Kaczmarski, Karol & Dzierwa, Piotr & Trojan, Marcin & Sobota, Tomasz, 2018. "Monitoring of thermal stresses in pressure components based on the wall temperature measurement," Energy, Elsevier, vol. 160(C), pages 500-519.
    20. Hong, Feng & Wang, Rui & Song, Jie & Gao, Mingming & Liu, Jizhen & Long, Dongteng, 2022. "A performance evaluation framework for deep peak shaving of the CFB boiler unit based on the DBN-LSSVM algorithm," Energy, Elsevier, vol. 238(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s036054422501165x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.