IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v331y2023ics0306261922016993.html
   My bibliography  Save this article

Factor substitution and development path of the new energy market in the BRICS countries under carbon neutrality: Inspirations from developed European countries

Author

Listed:
  • Pan, Yuling
  • Dong, Feng

Abstract

Carbon neutrality is proposed by many countries for responding to climate change and energy transformation. Developing new energy is crucial to achieving carbon neutrality goals. In the context of carbon neutrality, this paper analyzes the factor structure and market orientation of the new energy market in BRICS countries (including the Federative Republic of Brazil, Russian Federation, the Republic of India, People’s Republic of China, and the Republic of South Africa) and developed European (DE) countries in recent years. The primary conclusions are as follows: (1) In wind and solar energy markets, the BRICS countries exhibit an elastic substitution effect in production, indicating they have chosen the expansionary strategy with unbalanced factors. Through the contribution analysis, we find the development of wind and solar energy in BRICS countries is capital-oriented. However, the DE countries have opted for a conservative strategy with balanced factors, in which the wind and solar energy markets need promotional measures for capital investment and technological progress. (2) In the biomass energy market, both the BRICS countries and DE countries adopt the expansionary strategy. Besides, the development of the biomass energy market is technology-oriented except for India. (3) For the nuclear energy market, the BRICS countries and DE countries choose the conservative strategy and expansionary strategy, respectively. However, due to safety concerns, the expansion of nuclear energy in all countries has slowed. (4) Although a capital-oriented strategy can quickly promote the development of the new energy market, this practice compromises the local welfare and the benefits of the new energy technology progress to varying extents. The core insight of this paper is that BRICS countries should avoid the new energy capital trap and prevent the new energy technology dilemma. For the BRICS countries, policymakers should further evaluate the balance between capital-oriented interest and technology-oriented development. Also, achieving carbon neutrality is more difficult for the BRICS countries than DE countries. Hence, the BRICS countries should further refine their energy strategies for the long term.

Suggested Citation

  • Pan, Yuling & Dong, Feng, 2023. "Factor substitution and development path of the new energy market in the BRICS countries under carbon neutrality: Inspirations from developed European countries," Applied Energy, Elsevier, vol. 331(C).
  • Handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016993
    DOI: 10.1016/j.apenergy.2022.120442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922016993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yuling & Dong, Feng, 2023. "Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 658-679.
    2. Yu, Bolin & Fang, Debin & Pan, Yuling & Jia, Yunxia, 2023. "Countries’ green total-factor productivity towards a low-carbon world: The role of energy trilemma," Energy, Elsevier, vol. 278(PB).
    3. Bi-Huei Tsai & Yao-Min Huang, 2023. "Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    4. Liu, Yajie & Dong, Feng & Li, Guoqing & Huang, Jianheng & Yang, Shanshan & Wang, Yulong, 2023. "Public willingness to support the policy of banning gasoline vehicles sales and its internal mechanism," Energy, Elsevier, vol. 271(C).
    5. Yu, Bolin & Fang, Debin & Xiao, Kun & Pan, Yuling, 2023. "Drivers of renewable energy penetration and its role in power sector's deep decarbonization towards carbon peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    6. Yang Tang & Yifeng Liu & Weiqiang Huo & Meng Chen & Shilong Ye & Lei Cheng, 2023. "Optimal Allocation Scheme of Renewable Energy Consumption Responsibility Weight under Renewable Portfolio Standards: An Integrated Evolutionary Game and Stochastic Optimization Approach," Energies, MDPI, vol. 16(7), pages 1-22, March.
    7. Pan, Yuling & Dong, Feng, 2023. "The impacts of energy finance policies and renewable energy subsidy on energy vulnerability under carbon peaking scenarios," Energy, Elsevier, vol. 273(C).
    8. Han, Zhixin & Fang, Debin & Yang, Peiwen & Lei, Leyao, 2023. "Cooperative mechanisms for multi-energy complementarity in the electricity spot market," Energy Economics, Elsevier, vol. 127(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2016. "Does a small cost share reflect a negligible role for energy in economic production? Testing for aggregate production functions including capital, labor, and useful exergy through a cointegration-base," MPRA Paper 70850, University Library of Munich, Germany.
    2. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    3. Elena Lagomarsino & Karen Turner, 2017. "Is the production function Translog or CES? An empirical illustration using UK data," Working Papers 1713, University of Strathclyde Business School, Department of Economics.
    4. Lagomarsino, Elena, 2021. "Which nesting structure for the CES? A new selection approach based on input separability," Economic Modelling, Elsevier, vol. 102(C).
    5. Lecca, Patrizio & Swales, Kim & Turner, Karen, 2011. "An investigation of issues relating to where energy should enter the production function," Economic Modelling, Elsevier, vol. 28(6), pages 2832-2841.
    6. Yazid Dissou & Lilia Karnizova & Qian Sun, 2015. "Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
    7. Turner, Karen, 2009. "Negative rebound and disinvestment effects in response to an improvement in energy efficiency in the UK economy," Energy Economics, Elsevier, vol. 31(5), pages 648-666, September.
    8. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
    9. Michal Antoszewski, 2017. "Panel estimation of sectoral substitution elasticities for CES production functions," EcoMod2017 10160, EcoMod.
    10. Anil Markandya & Suzette Pedroso-Galinato, 2007. "How substitutable is natural capital?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 297-312, May.
    11. Wissema, Wiepke & Dellink, Rob, 2007. "AGE analysis of the impact of a carbon energy tax on the Irish economy," Ecological Economics, Elsevier, vol. 61(4), pages 671-683, March.
    12. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    13. Matthew K. Heun & João Santos & Paul E. Brockway & Randall Pruim & Tiago Domingos & Marco Sakai, 2017. "From Theory to Econometrics to Energy Policy: Cautionary Tales for Policymaking Using Aggregate Production Functions," Energies, MDPI, vol. 10(2), pages 1-44, February.
    14. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    15. Yazid Dissou & Reza Ghazal, 2010. "Energy Substitutability in Canadian Manufacturing Econometric Estimation with Bootstrap Confidence Intervals," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 121-148.
    16. Skelton, Alexandra C.H. & Paroussos, Leonidas & Allwood, Julian M., 2020. "Comparing energy and material efficiency rebound effects: an exploration of scenarios in the GEM-E3 macroeconomic model," Ecological Economics, Elsevier, vol. 173(C).
    17. Palatnik, Ruslana Rachel & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy Benefit the Israeli Economy? A Computable General Equilibrium Analysis," Climate Change Modelling and Policy Working Papers 6361, Fondazione Eni Enrico Mattei (FEEM).
    18. Bartelsman, Eric J. & Beetsma, Roel M. W. J., 2003. "Why pay more? Corporate tax avoidance through transfer pricing in OECD countries," Journal of Public Economics, Elsevier, vol. 87(9-10), pages 2225-2252, September.
    19. Woi Sok Oh & Rachata Muneepeerakul, 2019. "How do substitutability and effort asymmetry change resource management in coupled natural-human systems?," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-8, December.
    20. Lucas Bretschger, 2013. "Population Growth and Natural-Resource Scarcity: Long-Run Development under Seemingly Unfavorable Conditions," Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(3), pages 722-755, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.