IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics030626192030057x.html
   My bibliography  Save this article

Applying blockchain in the geoenergy domain: The road to interoperability and standards

Author

Listed:
  • Perrons, Robert K.
  • Cosby, Tonya

Abstract

Geoenergy sources will continue to be mainstays of the world’s energy mix for many years to come, but the technological and business realities behind these energy sources are changing in two fundamental ways. First, with much of the world’s “easy oil” already consumed, the companies behind geoenergy will have to use increasingly sophisticated technologies to find and deliver these energy sources to the market. Second, the expectations placed upon the geoenergy sector by many of its stakeholders have grown considerably with regards to environmental stewardship, safety, and human welfare. In the face of these kinds of challenges, the industry will require an increasing degree of technological and commercial sophistication to continue to be a part of the world’s sustainable energy mix. Blockchain has emerged as a promising innovation that could potentially play an important role in delivering the kinds of technological and commercial capabilities that the geoenergy sector will need to achieve these ends. In spite of the myriad ways that blockchain could potentially improve the efficiency and sustainability of the geoenergy industry, however, the technology is still evolving, and a few barriers stand in the way of its widespread deployment. This paper puts forward case study evidence from the Intel Corporation and the Energistics Consortium showing what the geoenergy sector can learn about blockchain from other industries, and highlights that the absence of data standards and interoperability has contributed to blockchain’s failure to deliver significant value in the geoenergy domain thus far.

Suggested Citation

  • Perrons, Robert K. & Cosby, Tonya, 2020. "Applying blockchain in the geoenergy domain: The road to interoperability and standards," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s030626192030057x
    DOI: 10.1016/j.apenergy.2020.114545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192030057X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan Chiu & Thorsten V Koeppl, 2019. "Blockchain-Based Settlement for Asset Trading," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1716-1753.
    2. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    3. Friedl, Christina & Reichl, Johannes, 2016. "Realizing energy infrastructure projects – A qualitative empirical analysis of local practices to address social acceptance," Energy Policy, Elsevier, vol. 89(C), pages 184-193.
    4. Sikorski, Janusz J. & Haughton, Joy & Kraft, Markus, 2017. "Blockchain technology in the chemical industry: Machine-to-machine electricity market," Applied Energy, Elsevier, vol. 195(C), pages 234-246.
    5. Moncada-Paternò-Castello, Pietro & Ciupagea, Constantin & Smith, Keith & Tübke, Alexander & Tubbs, Mike, 2010. "Does Europe perform too little corporate R&D? A comparison of EU and non-EU corporate R&D performance," Research Policy, Elsevier, vol. 39(4), pages 523-536, May.
    6. Foti, Magda & Vavalis, Manolis, 2019. "Blockchain based uniform price double auctions for energy markets," Applied Energy, Elsevier, vol. 254(C).
    7. Benjamin K. Sovacool, 2014. "Diversity: Energy studies need social science," Nature, Nature, vol. 511(7511), pages 529-530, July.
    8. Perrons, Robert K. & Jensen, Jesse W., 2015. "Data as an asset: What the oil and gas sector can learn from other industries about “Big Data”," Energy Policy, Elsevier, vol. 81(C), pages 117-121.
    9. Robert J. Bennett & Paul J. A. Robson, 2004. "The role of trust and contract in the supply of business advice," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 28(4), pages 471-488, July.
    10. Keetie Sluyterman, 2010. "Royal Dutch Shell: Company Strategies for Dealing with Environmental Issues," Business History Review, Harvard Business School, vol. 84(2), pages 203-226, June.
    11. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    12. Shunsuke Managi & SJames J. Opaluch & Di Jin & Thomas A. Grigalunas, 2005. "Environmental Regulations and Technological Change in the Offshore Oil and Gas Industry," Land Economics, University of Wisconsin Press, vol. 81(2).
    13. Frank Yiannas, 2018. "A New Era of Food Transparency Powered by Blockchain," Innovations: Technology, Governance, Globalization, MIT Press, vol. 12(1-2), pages 46-56, Summer-Fa.
    14. Li, Yinan & Yang, Wentao & He, Ping & Chen, Chang & Wang, Xiaonan, 2019. "Design and management of a distributed hybrid energy system through smart contract and blockchain," Applied Energy, Elsevier, vol. 248(C), pages 390-405.
    15. Perrons, Robert K. & Hems, Adam, 2013. "Cloud computing in the upstream oil & gas industry: A proposed way forward," Energy Policy, Elsevier, vol. 56(C), pages 732-737.
    16. Scheer, Dirk & Konrad, Wilfried & Wassermann, Sandra, 2017. "The good, the bad, and the ambivalent: A qualitative study of public perceptions towards energy technologies and portfolios in Germany," Energy Policy, Elsevier, vol. 100(C), pages 89-100.
    17. Jun-Ho Huh & Seong-Kyu Kim, 2019. "The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies," Sustainability, MDPI, vol. 11(11), pages 1-26, June.
    18. Sluyterman, Keetie, 2010. "Royal Dutch Shell: Company Strategies for Dealing with Environmental Issues," Business History Review, Cambridge University Press, vol. 84(2), pages 203-226, July.
    19. Managi, Shunsuke & Opaluch, James J. & Jin, Di & Grigalunas, Thomas A., 2005. "Technological change and petroleum exploration in the Gulf of Mexico," Energy Policy, Elsevier, vol. 33(5), pages 619-632, March.
    20. Weijermars, Ruud, 2009. "Accelerating the three dimensions of E&P clockspeed - A novel strategy for optimizing utility in the Oil & Gas industry," Applied Energy, Elsevier, vol. 86(10), pages 2222-2243, October.
    21. Brilliantova, Vlada & Thurner, Thomas Wolfgang, 2019. "Blockchain and the future of energy," Technology in Society, Elsevier, vol. 57(C), pages 38-45.
    22. Managi, Shunsuke & Opaluch, James J. & Jin, Di & Grigalunas, Thomas A., 2004. "Technological change and depletion in offshore oil and gas," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 388-409, March.
    23. Jianjun Sun & Jiaqi Yan & Kem Z. K. Zhang, 2016. "Blockchain-based sharing services: What blockchain technology can contribute to smart cities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-9, December.
    24. Zaman, Rafia & Brudermann, Thomas, 2018. "Energy governance in the context of energy service security: A qualitative assessment of the electricity system in Bangladesh," Applied Energy, Elsevier, vol. 223(C), pages 443-456.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Sourabh & Barua, Mukesh Kumar, 2023. "Exploring the hyperledger blockchain technology disruption and barriers of blockchain adoption in petroleum supply chain," Resources Policy, Elsevier, vol. 81(C).
    2. Thomas Puschmann & Christian Hugo Hoffmann & Valentyn Khmarskyi, 2020. "How Green FinTech Can Alleviate the Impact of Climate Change—The Case of Switzerland," Sustainability, MDPI, vol. 12(24), pages 1-30, December.
    3. Susie Ruqun WU & Gabriela Shirkey & Ilke Celik & Changliang Shao & Jiquan Chen, 2022. "A Review on the Adoption of AI, BC, and IoT in Sustainability Research," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    4. Ysé Commandré & Catherine Macombe & Sophie Mignon, 2021. "Implications for Agricultural Producers of Using Blockchain for Food Transparency, Study of 4 Food Chains by Cumulative Approach," Sustainability, MDPI, vol. 13(17), pages 1-22, September.
    5. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    6. Oana Marin & Tudor Cioara & Ionut Anghel, 2023. "Blockchain Solution for Buildings’ Multi-Energy Flexibility Trading Using Multi-Token Standards," Future Internet, MDPI, vol. 15(5), pages 1-17, May.
    7. Ysé Commandré & Catherine Macombe & Sophie Mignon, 2021. "Implications for Agricultural Producers of Using Blockchain for Food Transparency, Study of 4 Food Chains by Cumulative Approach," Post-Print hal-03351947, HAL.
    8. Wang, Longze & Jiao, Shucen & Xie, Yu & Xia, Shiwei & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2022. "Two-way dynamic pricing mechanism of hydrogen filling stations in electric-hydrogen coupling system enhanced by blockchain," Energy, Elsevier, vol. 239(PC).
    9. Thomas Puschmann & Valentyn Khmarskyi, 2024. "Green fintech: Developing a research agenda," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(4), pages 2823-2837, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chand Bhatt, Priyanka & Kumar, Vimal & Lu, Tzu-Chuen & Daim, Tugrul, 2021. "Technology convergence assessment: Case of blockchain within the IR 4.0 platform," Technology in Society, Elsevier, vol. 67(C).
    2. Gourisetti, Sri Nikhil Gupta & Sebastian-Cardenas, D. Jonathan & Bhattarai, Bishnu & Wang, Peng & Widergren, Steve & Borkum, Mark & Randall, Alysha, 2021. "Blockchain smart contract reference framework and program logic architecture for transactive energy systems," Applied Energy, Elsevier, vol. 304(C).
    3. Hamzah Khan & Tariq Masood, 2022. "Impact of Blockchain Technology on Smart Grids," Energies, MDPI, vol. 15(19), pages 1-27, September.
    4. Wang, Longze & Liu, Jinxin & Yuan, Rongfang & Wu, Jing & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2020. "Adaptive bidding strategy for real-time energy management in multi-energy market enhanced by blockchain," Applied Energy, Elsevier, vol. 279(C).
    5. Kumar, Sourabh & Barua, Mukesh Kumar, 2023. "Exploring the hyperledger blockchain technology disruption and barriers of blockchain adoption in petroleum supply chain," Resources Policy, Elsevier, vol. 81(C).
    6. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    7. Nazir Ullah & Waleed S. Alnumay & Waleed Mugahed Al-Rahmi & Ahmed Ibrahim Alzahrani & Hosam Al-Samarraie, 2020. "Modeling Cost Saving and Innovativeness for Blockchain Technology Adoption by Energy Management," Energies, MDPI, vol. 13(18), pages 1-22, September.
    8. Managi, Shunsuke & Opaluch, James J. & Jin, Di & Grigalunas, Thomas A., 2006. "Stochastic frontier analysis of total factor productivity in the offshore oil and gas industry," Ecological Economics, Elsevier, vol. 60(1), pages 204-215, November.
    9. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    10. Cerchione, Roberto & Centobelli, Piera & Riccio, Emanuela & Abbate, Stefano & Oropallo, Eugenio, 2023. "Blockchain’s coming to hospital to digitalize healthcare services: Designing a distributed electronic health record ecosystem," Technovation, Elsevier, vol. 120(C).
    11. Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Huang, Shuangfa & Vazquez-Brust, Diego, 2020. "Evaluating the factors that influence blockchain adoption in the freight logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    12. Bing Qing Tan & Fangfang Wang & Jia Liu & Kai Kang & Federica Costa, 2020. "A Blockchain-Based Framework for Green Logistics in Supply Chains," Sustainability, MDPI, vol. 12(11), pages 1-13, June.
    13. Ahmad, Raja Wasim & Salah, Khaled & Jayaraman, Raja & Yaqoob, Ibrar & Omar, Mohammed, 2022. "Blockchain in oil and gas industry: Applications, challenges, and future trends," Technology in Society, Elsevier, vol. 68(C).
    14. Giuliano Sansone & Flavio Santalucia & Davide Viglialoro & Paolo Landoni, 2023. "Blockchain for social good and stakeholder engagement: Evidence from a case study," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2182-2193, September.
    15. Garg, Poonam & Gupta, Bhumika & Chauhan, Ajay Kumar & Sivarajah, Uthayasankar & Gupta, Shivam & Modgil, Sachin, 2021. "Measuring the perceived benefits of implementing blockchain technology in the banking sector," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    16. Jagdish Prasad Nepal & Nuttaya Yuangyai & Saroj Gyawali & Chumpol Yuangyai, 2022. "Blockchain-Based Smart Renewable Energy: Review of Operational and Transactional Challenges," Energies, MDPI, vol. 15(13), pages 1-21, July.
    17. Seong-Kyu Kim & Jun-Ho Huh, 2020. "Blockchain of Carbon Trading for UN Sustainable Development Goals," Sustainability, MDPI, vol. 12(10), pages 1-32, May.
    18. Tobias Rösch & Peter Treffinger & Barbara Koch, 2021. "Regional Flexibility Markets—Solutions to the European Energy Distribution Grid—A Systematic Review and Research Agenda," Energies, MDPI, vol. 14(9), pages 1-32, April.
    19. Paiho, Satu & Kiljander, Jussi & Sarala, Roope & Siikavirta, Hanne & Kilkki, Olli & Bajpai, Arpit & Duchon, Markus & Pahl, Marc-Oliver & Wüstrich, Lars & Lübben, Christian & Kirdan, Erkin & Schindler,, 2021. "Towards cross-commodity energy-sharing communities – A review of the market, regulatory, and technical situation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Tandon, Anushree & Kaur, Puneet & Mäntymäki, Matti & Dhir, Amandeep, 2021. "Blockchain applications in management: A bibliometric analysis and literature review," Technological Forecasting and Social Change, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s030626192030057x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.