IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v194y2017icp784-797.html
   My bibliography  Save this article

Eco-driving for transit: An effective strategy to conserve fuel and emissions

Author

Listed:
  • Xu, Yanzhi
  • Li, Hanyan
  • Liu, Haobing
  • Rodgers, Michael O.
  • Guensler, Randall L.

Abstract

Eco-driving is one of the many options to reduce fuel consumption and emissions from transit operations. However, it is not yet clear how effective eco-driving is for different transit service and fuel types. As policymakers consider implementing eco-driving, they also need comparisons of eco-driving against other fuel-conserving strategies, such as purchasing alternative fuel vehicles. Using a case study of transit operations in Atlanta, Georgia, United States, this paper evaluated eco-driving for two very different service types – local urban service and express service. The authors simulated the implementation of transit eco-driving strategies using an innovative, streamlined algorithm designed to minimize fuel consumption by limiting instantaneous vehicle specific power while maintaining average speed and conserving total distance. Fuel consumption and fuel-cycle emissions were compared across the monitored driving cycles and their modified eco-driving cycles. The savings from eco-driving were also compared to fuel and emissions reductions expected via the conversion of the transit fleets to compressed natural gas (CNG), another popular fuel conservation strategy. The results showed that eco-driving would be a potentially very cost-effective strategy for local and express bus transit operations.

Suggested Citation

  • Xu, Yanzhi & Li, Hanyan & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall L., 2017. "Eco-driving for transit: An effective strategy to conserve fuel and emissions," Applied Energy, Elsevier, vol. 194(C), pages 784-797.
  • Handle: RePEc:eee:appene:v:194:y:2017:i:c:p:784-797
    DOI: 10.1016/j.apenergy.2016.09.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916314040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.09.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xi, Jiaqi & Li, Mian & Xu, Min, 2014. "Optimal energy management strategy for battery powered electric vehicles," Applied Energy, Elsevier, vol. 134(C), pages 332-341.
    2. Alam, Md. Saniul & McNabola, Aonghus, 2014. "A critical review and assessment of Eco-Driving policy & technology: Benefits & limitations," Transport Policy, Elsevier, vol. 35(C), pages 42-49.
    3. Barkenbus, Jack N., 2010. "Eco-driving: An overlooked climate change initiative," Energy Policy, Elsevier, vol. 38(2), pages 762-769, February.
    4. Xu, Yanzhi & Gbologah, Franklin E. & Lee, Dong-Yeon & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall L., 2015. "Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling," Applied Energy, Elsevier, vol. 154(C), pages 143-159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. József Vásárhelyi & Omar M. Salih & Hussam Mahmod Rostum & Rabab Benotsname, 2023. "An Overview of Energies Problems in Robotic Systems," Energies, MDPI, vol. 16(24), pages 1-24, December.
    2. Yutao Chen & Nazar Rozkvas & Mircea Lazar, 2020. "Driving Mode Optimization for Hybrid Trucks Using Road and Traffic Preview Data," Energies, MDPI, vol. 13(20), pages 1-18, October.
    3. Tang, Tie-Qiao & Yi, Zhi-Yan & Zhang, Jian & Wang, Tao & Leng, Jun-Qiang, 2018. "A speed guidance strategy for multiple signalized intersections based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 399-409.
    4. Dong, Haoxuan & Zhuang, Weichao & Chen, Boli & Wang, Yan & Lu, Yanbo & Liu, Ying & Xu, Liwei & Yin, Guodong, 2022. "A comparative study of energy-efficient driving strategy for connected internal combustion engine and electric vehicles at signalized intersections," Applied Energy, Elsevier, vol. 310(C).
    5. Huang, Yuhan & Ng, Elvin C.Y. & Zhou, John L. & Surawski, Nic C. & Chan, Edward F.C. & Hong, Guang, 2018. "Eco-driving technology for sustainable road transport: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 596-609.
    6. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    7. Fafoutellis, Panagiotis & Mantouka, Eleni G. & Vlahogianni, Eleni I., 2022. "Acceptance of a Pay-How-You-Drive pricing scheme for city traffic: The case of Athens," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 270-284.
    8. Dennis Dreier & Semida Silveira & Dilip Khatiwada & Keiko V. O. Fonseca & Rafael Nieweglowski & Renan Schepanski, 2019. "The influence of passenger load, driving cycle, fuel price and different types of buses on the cost of transport service in the BRT system in Curitiba, Brazil," Transportation, Springer, vol. 46(6), pages 2195-2242, December.
    9. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2020. "Real-world fuel efficiency and emissions from an urban diesel bus engine under transient operating conditions," Applied Energy, Elsevier, vol. 261(C).
    10. Guan Wang & Jintao Lai & Zhexi Lian & Zhen Zhang, 2023. "An Eco-Driving Strategy Considering Phase-Switch-Based Bus Lane Sharing," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    11. Oswald, David & Hao, Peng & Williams, Nigel & Barth, Matthew, 2021. "Development of an Innovation Corridor Testbed for Shared Electric Connected and Automated Transportation," Institute of Transportation Studies, Working Paper Series qt99q6w075, Institute of Transportation Studies, UC Davis.
    12. Guensler, Randall & Liu, Haobing & Xu, Xiaodan & Lu, Hongyu & Rodgers, Michael O., 2018. "MOVES-Matrix for High-Performance Emission Rate Model Applications," Institute of Transportation Studies, Working Paper Series qt3xp5z35t, Institute of Transportation Studies, UC Davis.
    13. Guo, Cong & Fu, Chunyun & Luo, Ronghua & Yang, Guanlong, 2022. "Energy-oriented car-following control for a front- and rear-independent-drive electric vehicle platoon," Energy, Elsevier, vol. 257(C).
    14. Ma, Fangwu & Yang, Yu & Wang, Jiawei & Liu, Zhenze & Li, Jinhang & Nie, Jiahong & Shen, Yucheng & Wu, Liang, 2019. "Predictive energy-saving optimization based on nonlinear model predictive control for cooperative connected vehicles platoon with V2V communication," Energy, Elsevier, vol. 189(C).
    15. Panagiotis Fafoutellis & Eleni G. Mantouka & Eleni I. Vlahogianni, 2020. "Eco-Driving and Its Impacts on Fuel Efficiency: An Overview of Technologies and Data-Driven Methods," Sustainability, MDPI, vol. 13(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    2. Nurul Hidayah Muslim & Ali Keyvanfar & Arezou Shafaghat & Mu’azu Mohammed Abdullahi & Majid Khorami, 2018. "Green Driver: Travel Behaviors Revisited on Fuel Saving and Less Emission," Sustainability, MDPI, vol. 10(2), pages 1-30, January.
    3. Vaezipour, Atiyeh & Rakotonirainy, Andry & Haworth, Narelle & Delhomme, Patricia, 2018. "A simulator evaluation of in-vehicle human machine interfaces for eco-safe driving," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 696-713.
    4. Sanguinetti, Angela, 2018. "Onboard Feedback to Promote Eco-Driving: Average Impact and Important Features," Institute of Transportation Studies, Working Paper Series qt99m5j3q7, Institute of Transportation Studies, UC Davis.
    5. Huang, Yuhan & Ng, Elvin C.Y. & Zhou, John L. & Surawski, Nic C. & Chan, Edward F.C. & Hong, Guang, 2018. "Eco-driving technology for sustainable road transport: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 596-609.
    6. Lin, Rui & Wang, Peggy, 2022. "Intention to perform eco-driving and acceptance of eco-driving system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 444-459.
    7. Giest, Sarah & Mukherjee, Ishani, 2018. "Behavioral instruments in renewable energy and the role of big data: A policy perspective," Energy Policy, Elsevier, vol. 123(C), pages 360-366.
    8. Vaezipour, Atiyeh & Rakotonirainy, Andry & Haworth, Narelle & Delhomme, Patricia, 2017. "Enhancing eco-safe driving behaviour through the use of in-vehicle human-machine interface: A qualitative study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 247-263.
    9. Lee, Heeyun & Kim, Kyunghyun & Kim, Namwook & Cha, Suk Won, 2022. "Energy efficient speed planning of electric vehicles for car-following scenario using model-based reinforcement learning," Applied Energy, Elsevier, vol. 313(C).
    10. Ali Keyvanfar & Arezou Shafaghat & Nasiru Zakari Muhammad & M. Salim Ferwati, 2018. "Driving Behaviour and Sustainable Mobility—Policies and Approaches Revisited," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    11. Sanguinetti, Angela & Queen, Ella & Yee, Christopher & Akanesuvan, Kantapon, 2020. "Average impact and important features of onboard eco-driving feedback: A meta-analysis," Institute of Transportation Studies, Working Paper Series qt9hm406d5, Institute of Transportation Studies, UC Davis.
    12. Ahmed, Sumayyah & Sanguinetti, Angela, 2015. "OBDEnergy: Making Metrics Meaningful in Eco-driving Feedback," Institute of Transportation Studies, Working Paper Series qt0x73t2jw, Institute of Transportation Studies, UC Davis.
    13. Pietro Stabile & Federico Ballo & Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2023. "Eco-Driving Strategy Implementation for Ultra-Efficient Lightweight Electric Vehicles in Realistic Driving Scenarios," Energies, MDPI, vol. 16(3), pages 1-19, January.
    14. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    15. Yang Wang & Alessandra Boggio-Marzet, 2018. "Evaluation of Eco-Driving Training for Fuel Efficiency and Emissions Reduction According to Road Type," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    16. Geir H. M. Bjertnæs, 2019. "Efficient taxation of fuel and road use," Discussion Papers 905, Statistics Norway, Research Department.
    17. Alejandro G. Tuero & Laura Pozueco & Roberto García & Gabriel Díaz & Xabiel G. Pañeda & David Melendi & Abel Rionda & David Martínez, 2017. "Economic Impact of the Use of Inertia in an Urban Bus Company," Energies, MDPI, vol. 10(7), pages 1-17, July.
    18. Echeverría, Lucía & Gimenez-Nadal, J. Ignacio & Molina, José Alberto, 2021. "Carpooling: User profiles and well-being," Nülan. Deposited Documents 3568, Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación.
    19. Panagiotis Fafoutellis & Eleni G. Mantouka & Eleni I. Vlahogianni, 2020. "Eco-Driving and Its Impacts on Fuel Efficiency: An Overview of Technologies and Data-Driven Methods," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    20. Paul Baustert & Tomás Navarrete Gutiérrez & Thomas Gibon & Laurent Chion & Tai-Yu Ma & Gabriel Leite Mariante & Sylvain Klein & Philippe Gerber & Enrico Benetto, 2019. "Coupling Activity-Based Modeling and Life Cycle Assessment—A Proof-of-Concept Study on Cross-Border Commuting in Luxembourg," Sustainability, MDPI, vol. 11(15), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:194:y:2017:i:c:p:784-797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.