Author
Listed:
- Lu, Hongyu
- Liu, Haobing
- Rodgers, Michael O
- Guensler, Randall
Abstract
In this study, a modeling framework for population exposure to traffic-related PM2.5 with high spatiotemporal resolution is proposed and applied to the I-575/I-75 Northwest Corridor (NWC) in Atlanta, GA, for environmental equity analysis. The analyses retrieved trip data from the Atlanta Regional Commission’s (ARC) Activity-Based Model 2020 (ABM2020), after implementing path retention algorithms (Zhao, et al., 2019) to generate individual travel paths for more than 20 million predicted vehicle trips. Emission rates for each link were retrieved from MOVES-Matrix given the ABM link speed and facility type, the ARC’s county-level fleet composition data, and regional fuel properties and I&M program parameters. High-resolution downwind concentration profiles were predicted using EPA’s AERMOD microscale dispersion model with AERMET meteorology profiles for a huge array of receptors. Trip-end locations were derived from the ABM trip data, and the on-road trajectories for each person-trip (vehicle trace data) were derived from the travel paths through network. ABM synthetic household and person data were used in demographic assessment, and linked to representative household latitude and longitude locations in the Epsilon 2019 household demographic dataset. Individual exposure to traffic-related PM2.5 in time and space (average hourly concentration) was assessed by overlaying the second-by-second person location profiles (for 24 hours) against the hourly predicted PM2.5 concentration profiles. The analyses summarize the results across 16 demographic groups and the aggregate population exposure are compared to assess potential impact differences across demographics. High-income households in the corridor were exposed to less traffic-related air pollution as they tended to live further from the freeways. The analyses did not reveal large disproportionate negative impacts on low income groups along this specific corridor, but lager disproportionate negative impacts are expected elsewhere in the metro area due to the spatial clustering of income groups along other corridors. Overall, the research demonstrates the applicability of the modeling framework and describes how the various elements (e.g., link screening, dispersion modeling, path tracing, etc.) are optimized on the supercomputing cluster. View the NCST Project Webpage
Suggested Citation
Lu, Hongyu & Liu, Haobing & Rodgers, Michael O & Guensler, Randall, 2024.
"A Modeling Framework for Near-Road Population Exposure to Traffic-Related PM2.5 and Environmental Equity Analysis: A Case Study in Atlanta, Georgia,"
Institute of Transportation Studies, Working Paper Series
qt6zx778p0, Institute of Transportation Studies, UC Davis.
Handle:
RePEc:cdl:itsdav:qt6zx778p0
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt6zx778p0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.