IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt20h266r6.html
   My bibliography  Save this paper

Synthetic Fleet Generation and Vehicle Assignment to Synthetic Households for Regional and Sub-regional Sustainability Analysis

Author

Listed:
  • Lu, Hongyu
  • Rodgers, Michael O.
  • Guensler, Randall

Abstract

In this study, a modeling framework was developed to generate high-resolution synthetic fleets, for use with synthetic household modeling in activity-based travel models, by integrating various data sources. The synthetic households were generated by pairing household locations and demographic attributes, and synthetic fleets were assigned to the households so that travel demand model outputs would have vehicles associated with each model-predicted tour for energy and emissions analysis. The CO emissions were modeled for each vehicle and each link traversed by vehicles as predicted by the travel demand model, and the results of the synthetic fleet (by employing Monte Carlo simulations and Bootstrap techniques) were compared with those from standard regional and sub-regional fleet configurations. The results demonstrated that using a traditional sub-regional fleet scenario produced 30% higher predicted emissions than when the synthetic fleet was employed with predicted vehicle trips, and that using a regional average fleet (applied throughout the region) produced emissions that were more than 50% higher than synthetic fleet emissions. Lowest household emissions were associated with low-income and non-working households, and highest emissions were associated with moderate-income households and one-person high income household groups. The results presented in the research are not necessarily conclusive, because the licensed vehicle data procured for Atlanta appear to be biased toward older vehicles. Model year penetration rates are accounted for in these analyses, but the authors believe that the variability in the registration mix for newer vehicles is likely underestimated in the data procured for these analyses. The authors conclude that access to statewide registration data will be required to remove potential biases that exist in licensed private data sets. Nevertheless, the study does demonstrate that properly pairing vehicle model years with the most active households (and their daily trips) significantly impacts energy and emissions analysis. View the NCST Project Webpage

Suggested Citation

  • Lu, Hongyu & Rodgers, Michael O. & Guensler, Randall, 2024. "Synthetic Fleet Generation and Vehicle Assignment to Synthetic Households for Regional and Sub-regional Sustainability Analysis," Institute of Transportation Studies, Working Paper Series qt20h266r6, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt20h266r6
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/20h266r6.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Choo, Sangho & Mokhtarian, Patricia L., 2004. "What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 201-222, March.
    2. Dai, Ziyi & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall, 2022. "Electric vehicle market potential and associated energy and emissions reduction benefits," Applied Energy, Elsevier, vol. 322(C).
    3. Xu, Yanzhi & Li, Hanyan & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall L., 2017. "Eco-driving for transit: An effective strategy to conserve fuel and emissions," Applied Energy, Elsevier, vol. 194(C), pages 784-797.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vredin Johansson, Maria & Heldt, Tobias & Johansson, Per, 2006. "The effects of attitudes and personality traits on mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 507-525, July.
    2. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    3. Wårell, Linda & Ek, Kristina, 2024. "Male lone wolves and sociable females – Preferences for shared and AV transport services," Research in Transportation Economics, Elsevier, vol. 108(C).
    4. Michel Freyssenet & Bruno Jetin, 2019. "The deregulation of employment and finance: the Big Three in crisis," Working Papers halshs-02020051, HAL.
    5. Yazdanpanah, Mahdi & Hosseinlou, Mansour Hadji, 2016. "The influence of personality traits on airport public transport access mode choice: A hybrid latent class choice modeling approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 147-163.
    6. Bhat, Furqan A. & Verma, Ashish, 2024. "Electric two-wheeler adoption in India – A discrete choice analysis of motivators and barriers affecting the potential electric two-wheeler buyers," Transport Policy, Elsevier, vol. 152(C), pages 118-131.
    7. Martin, Elliott William, 2009. "New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax," University of California Transportation Center, Working Papers qt5gd206wv, University of California Transportation Center.
    8. Qingbo Tan & Zhuning Wang & Wei Fan & Xudong Li & Xiangguang Li & Fanqi Li & Zihao Zhao, 2022. "Development Path and Model Design of a New Energy Vehicle in China," Energies, MDPI, vol. 16(1), pages 1-15, December.
    9. Drebee, Hayder Abbas & Abdul Razak, Nor Azam & karim, mohd, 2014. "Is There an Overlapping Market between National Car Producers in Malaysia?," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 48(1), pages 75-85.
    10. Peters, Anja & Mueller, Michel G. & de Haan, Peter & Scholz, Roland W., 2008. "Feebates promoting energy-efficient cars: Design options to address more consumers and possible counteracting effects," Energy Policy, Elsevier, vol. 36(4), pages 1355-1365, April.
    11. Wang, Tingting & Chen, Cynthia, 2012. "Attitudes, mode switching behavior, and the built environment: A longitudinal study in the Puget Sound Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1594-1607.
    12. Hafner, Rebecca J. & Walker, Ian & Verplanken, Bas, 2017. "Image, not environmentalism: A qualitative exploration of factors influencing vehicle purchasing decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 89-105.
    13. Silm, Siiri & Tominga, Ago & Saidla, Karl & Poom, Age & Tammaru, Tiit, 2024. "Socio-economic and residential differences in urban modality styles based on a long-term smartphone experiment," Journal of Transport Geography, Elsevier, vol. 115(C).
    14. Tang, Tie-Qiao & Yi, Zhi-Yan & Zhang, Jian & Wang, Tao & Leng, Jun-Qiang, 2018. "A speed guidance strategy for multiple signalized intersections based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 399-409.
    15. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    16. Galarraga, Ibon & Kallbekken, Steffen & Silvestri, Alessandro, 2020. "Consumer purchases of energy-efficient cars: How different labelling schemes could affect consumer response to price changes," Energy Policy, Elsevier, vol. 137(C).
    17. Melton, Noel & Axsen, Jonn & Goldberg, Suzanne, 2017. "Evaluating plug-in electric vehicle policies in the context of long-term greenhouse gas reduction goals: Comparing 10 Canadian provinces using the “PEV policy report card”," Energy Policy, Elsevier, vol. 107(C), pages 381-393.
    18. Le Vine, Scott & Chen, Bingqing (Emily) & Polak, John, 2014. "Does the income elasticity of road traffic depend on the source of income?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 15-29.
    19. Ory, David T, 2007. "Structural Equation Modeling of Relative Desired Travel Amounts," Institute of Transportation Studies, Working Paper Series qt8mj659fp, Institute of Transportation Studies, UC Davis.
    20. Guo, Cong & Fu, Chunyun & Luo, Ronghua & Yang, Guanlong, 2022. "Energy-oriented car-following control for a front- and rear-independent-drive electric vehicle platoon," Energy, Elsevier, vol. 257(C).

    More about this item

    Keywords

    Engineering; Demographics; Energy consumption; Households; Monte Carlo method; Pollutants; Travel demand; Vehicle fleets;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt20h266r6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.