IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v166y2022icp444-459.html
   My bibliography  Save this article

Intention to perform eco-driving and acceptance of eco-driving system

Author

Listed:
  • Lin, Rui
  • Wang, Peggy

Abstract

Eco-driving is one strategy for reducing transportation sector fuel usage and greenhouse gas emissions. With the advancement of connected-vehicle technology, the dynamic eco-driving concept can utilize real-time vehicle-specific information to optimize vehicle speed, thereby further reducing fuel consumption and emissions. The objective of this research was to determine the elements that influence drivers' intentions to practice eco-driving and their acceptance of eco-driving technology. A theoretical model of technology acceptance for both internal combustion engine vehicle (ICEV) and electric vehicle (EV) drivers was built using a mix of the Theory of Planned Behavior (TPB), the Technology Acceptance Model (TAM), and Goal Framing. Drivers’ acceptance of eco-driving system was hypothesized to be based on their intention to perform eco-driving. The model's validity was verified using a structural equation modeling analysis of data from a survey with 340 replies from ICEV drivers and 315 responses from EV drivers. The findings corroborated the original hypotheses in TAM and TPB, and drivers' intention to practice eco-driving had an indirect effect on their intention to utilize the system via the construct of perceived ease of use. In comparison to ICEV drivers, EV drivers possessed a greater understanding of eco-driving. The four goal framing structures each played a different role in the ICEV and EV models. In the ICEV model, the altruistic goal contributed positively to the social norm construct. By contrast, the social norm was positively influenced by the biospheric and the egoistic goals, and negatively influenced by the hedonic goal in the EV model. This study's framework and results provide theoretical and practical guidelines for researchers, manufacturers, and policy-makers to understand drivers' motivation to perform eco-driving and increase drivers' acceptance of the eco-driving system.

Suggested Citation

  • Lin, Rui & Wang, Peggy, 2022. "Intention to perform eco-driving and acceptance of eco-driving system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 444-459.
  • Handle: RePEc:eee:transa:v:166:y:2022:i:c:p:444-459
    DOI: 10.1016/j.tra.2022.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585642200283X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2022.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonn Axsen & Patrick Plötz & Michael Wolinetz, 2020. "Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport," Nature Climate Change, Nature, vol. 10(9), pages 809-818, September.
    2. Truong, Yann & McColl, Rod, 2011. "Intrinsic motivations, self-esteem, and luxury goods consumption," Journal of Retailing and Consumer Services, Elsevier, vol. 18(6), pages 555-561.
    3. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    4. Alam, Md. Saniul & McNabola, Aonghus, 2014. "A critical review and assessment of Eco-Driving policy & technology: Benefits & limitations," Transport Policy, Elsevier, vol. 35(C), pages 42-49.
    5. Yang, Ching-Chiao & Hsu, Wei-Lin, 2018. "Evaluating the impact of security management practices on resilience capability in maritime firms—a relational perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 220-233.
    6. Barkenbus, Jack N., 2010. "Eco-driving: An overlooked climate change initiative," Energy Policy, Elsevier, vol. 38(2), pages 762-769, February.
    7. Tchetchik, Anat & Zvi, Liat I. & Kaplan, Sigal & Blass, Vered, 2020. "The joint effects of driving hedonism and trialability on the choice between internal combustion engine, hybrid, and electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    8. Strömberg, Helena & Karlsson, I.C. MariAnne & Rexfelt, Oskar, 2015. "Eco-driving: Drivers’ understanding of the concept and implications for future interventions," Transport Policy, Elsevier, vol. 39(C), pages 48-54.
    9. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    10. Helveston, John Paul & Liu, Yimin & Feit, Elea McDonnell & Fuchs, Erica & Klampfl, Erica & Michalek, Jeremy J., 2015. "Will subsidies drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 96-112.
    11. Wang, Shanyong & Wang, Jing & Li, Jun & Wang, Jinpeng & Liang, Liang, 2018. "Policy implications for promoting the adoption of electric vehicles: Do consumer’s knowledge, perceived risk and financial incentive policy matter?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 58-69.
    12. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
    13. Sanguinetti, Angela & Queen, Ella & Yee, Christopher & Akanesuvan, Kantapon, 2020. "Average impact and important features of onboard eco-driving feedback: A meta-analysis," Institute of Transportation Studies, Working Paper Series qt9hm406d5, Institute of Transportation Studies, UC Davis.
    14. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    15. Fred D. Davis & Richard P. Bagozzi & Paul R. Warshaw, 1989. "User Acceptance of Computer Technology: A Comparison of Two Theoretical Models," Management Science, INFORMS, vol. 35(8), pages 982-1003, August.
    16. Sivak, Michael & Schoettle, Brandon, 2012. "Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy," Transport Policy, Elsevier, vol. 22(C), pages 96-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Vincent F. & Aloina, Grace & Eccarius, Timo, 2023. "Adoption intentions of home-refill delivery service for fast-moving consumer goods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    2. Ka-Wai Ng & Hing-Yan Tong, 2024. "Comparisons of Driving Characteristics between Electric and Diesel-Powered Bus Operations along Identical Bus Routes," Sustainability, MDPI, vol. 16(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun Yang & Jui-Che Tu & Qianling Jiang, 2020. "The Influential Factors of Consumers’ Sustainable Consumption: A Case on Electric Vehicles in China," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    2. Shanmugavel, Nagarajan & Balakrishnan, Janarthanan, 2023. "Influence of pro-environmental behaviour towards behavioural intention of electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    3. Kumar Shalender & Naman Sharma, 2021. "Using extended theory of planned behaviour (TPB) to predict adoption intention of electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 665-681, January.
    4. Brückmann, Gracia, 2022. "The effects of policies providing information and trialling on the knowledge about and the intention to adopt new energy technologies," Energy Policy, Elsevier, vol. 167(C).
    5. Huang, Yuhan & Ng, Elvin C.Y. & Zhou, John L. & Surawski, Nic C. & Chan, Edward F.C. & Hong, Guang, 2018. "Eco-driving technology for sustainable road transport: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 596-609.
    6. Haider Ali Abbasi & Satirenjit Kaur Johl & Zullina Bt Hussain Shaari & Wajiha Moughal & Muhammad Mazhar & Muhammad Ali Musarat & Waqas Rafiq & Asaad Salam Farooqi & Alexey Borovkov, 2021. "Consumer Motivation by Using Unified Theory of Acceptance and Use of Technology towards Electric Vehicles," Sustainability, MDPI, vol. 13(21), pages 1-22, November.
    7. Eunsung Kim & Eunnyeong Heo, 2019. "Key Drivers behind the Adoption of Electric Vehicle in Korea: An Analysis of the Revealed Preferences," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    8. Jaiswal, Deepak & Kaushal, Vikrant & Kant, Rishi & Kumar Singh, Pankaj, 2021. "Consumer adoption intention for electric vehicles: Insights and evidence from Indian sustainable transportation," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    9. Tuğba Yeğin & Muhammad Ikram, 2022. "Analysis of Consumers’ Electric Vehicle Purchase Intentions: An Expansion of the Theory of Planned Behavior," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    10. Zhang, Wenqing & Liu, Liangliang, 2022. "Exploring non-users' intention to adopt ride-sharing services: Taking into account increased risks due to the COVID-19 pandemic among other factors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 180-195.
    11. Kum Fai Yuen & Do Thi Khanh Huyen & Xueqin Wang & Guanqiu Qi, 2020. "Factors Influencing the Adoption of Shared Autonomous Vehicles," IJERPH, MDPI, vol. 17(13), pages 1-17, July.
    12. Andriosopoulos, Kostas & Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2018. "The impact of age on Italian consumers' attitude toward alternative fuel vehicles," Renewable Energy, Elsevier, vol. 119(C), pages 299-308.
    13. Salari, Nasir, 2022. "Electric vehicles adoption behaviour: Synthesising the technology readiness index with environmentalism values and instrumental attributes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 60-81.
    14. Juan Francisco Coloma & Marta García & Gonzalo Fernández & Andrés Monzón, 2021. "Environmental Effects of Eco-Driving on Courier Delivery," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    15. Adu-Gyamfi, Gibbson & Song, Huaming & Nketiah, Emmanuel & Obuobi, Bright & Adjei, Mavis & Cudjoe, Dan, 2022. "Determinants of adoption intention of battery swap technology for electric vehicles," Energy, Elsevier, vol. 251(C).
    16. Reema Bera & Bhargab Maitra, 2021. "Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    17. Goel, Pooja & Kumar, Aalok & Parayitam, Satyanarayana & Luthra, Sunil, 2023. "Understanding transport users' preferences for adopting electric vehicle based mobility for sustainable city: A moderated moderated-mediation model," Journal of Transport Geography, Elsevier, vol. 106(C).
    18. Qianwen Li & Ruyin Long & Hong Chen & Jichao Geng, 2017. "Low Purchase Willingness for Battery Electric Vehicles: Analysis and Simulation Based on the Fault Tree Model," Sustainability, MDPI, vol. 9(5), pages 1-20, May.
    19. Adnan, Nadia & Nordin, Shahrina Md & Rahman, Imran & Rasli, Amran Md, 2017. "A new era of sustainable transport: An experimental examination on forecasting adoption behavior of EVs among Malaysian consumer," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 279-295.
    20. Guo, Yuntao & Souders, Dustin & Labi, Samuel & Peeta, Srinivas & Benedyk, Irina & Li, Yujie, 2021. "Paving the way for autonomous Vehicles: Understanding autonomous vehicle adoption and vehicle fuel choice under user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 364-398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:166:y:2022:i:c:p:444-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.