IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

New technology adoption for Russian energy generation: What does it cost? A case study for Moscow

Listed author(s):
  • Bratanova, Alexandra
  • Robinson, Jacqueline
  • Wagner, Liam

Russia is frequently referred to as a country with substantial energy efficiency and renewable energy potential. In 2000–2008 energy-gross domestic product (GDP) ratios were improved by 35%, however, the contribution of technological progress accounts for only 1% of the energy-GDP ratio reduction. At the same time, although new policy mechanisms to stimulate renewable energy development have been recently introduced, renewable technology deployment has not yet taken off. Economic theory suggests that there is no better incentive for industry development than cost signals. This paper adapts the levelised cost of energy methodology to examine the cost structures associated with electricity generation by conventional and new technology types for a Russian region (Moscow). The model, run for two fuel price scenarios, allowed us to conclude that the regional energy supply system is heavily dependent on the natural gas price and that the diversification provided by technology development will be beneficial for the energy security of the region. We conclude that new and renewable technologies become cost-effective for electricity generation as domestic natural gas prices reach parity with export prices. However, strong political and financial support is needed to boost technological development and renewables application in Russia.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S030626191501329X
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Applied Energy.

Volume (Year): 162 (2016)
Issue (Month): C ()
Pages: 924-939

as
in new window

Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:924-939
DOI: 10.1016/j.apenergy.2015.10.102
Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

Order Information: Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
  2. Parra, David & Gillott, Mark & Norman, Stuart A. & Walker, Gavin S., 2015. "Optimum community energy storage system for PV energy time-shift," Applied Energy, Elsevier, vol. 137(C), pages 576-587.
  3. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
  4. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2015. "An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications," Applied Energy, Elsevier, vol. 138(C), pages 605-620.
  5. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
  6. Paltsev, Sergey, 2014. "Scenarios for Russia's natural gas exports to 2050," Energy Economics, Elsevier, vol. 42(C), pages 262-270.
  7. Boute, Anatole & Willems, Patrick, 2012. "RUSTEC: Greening Europe's energy supply by developing Russia's renewable energy potential," Energy Policy, Elsevier, vol. 51(C), pages 618-629.
  8. Kalashnikov, Victor & Gulidov, Ruslan & Ognev, Alexander, 2011. "Energy sector of the Russian Far East: Current status and scenarios for the future," Energy Policy, Elsevier, vol. 39(11), pages 6760-6780.
  9. Gorbacheva, Natalya V. & Sovacool, Benjamin K., 2015. "Pain without gain? Reviewing the risks and rewards of investing in Russian coal-fired electricity," Applied Energy, Elsevier, vol. 154(C), pages 970-986.
  10. Salomons, Roelof & Grootveld, Henk, 2002. "The equity risk premium: emerging versus developed markets," Research Report 02E45, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
  11. Kuleshov, Dmitry & Viljainen, Satu & Annala, Salla & Gore, Olga, 2012. "Russian electricity sector reform: Challenges to retail competition," Utilities Policy, Elsevier, vol. 23(C), pages 40-49.
  12. repec:dgr:rugsom:02e45 is not listed on IDEAS
  13. Paul Simshauser & Phillip Wild, 2009. "The Western Australian Power Dilemma ," Australian Economic Papers, Wiley Blackwell, vol. 48(4), pages 342-369, December.
  14. Nathalie Trudeau & Isabel Murray, 2011. "Development of Energy Efficiency Indicators in Russia," IEA Energy Papers 2011/1, OECD Publishing.
  15. Nadia Chernenko, 2013. "The Impact of Efficient Carbon and Gas Pricing on the Russian Electricity Market," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
  16. John Foster & Liam Wagner & Alexandra Bratanova, 2014. "LCOE models: A comparison of the theoretical frameworks and key assumptions," Energy Economics and Management Group Working Papers 4-2014, School of Economics, University of Queensland, Australia.
  17. Pristupa, Alexey O. & Mol, Arthur P.J. & Oosterveer, Peter, 2010. "Stagnating liquid biofuel developments in Russia: Present status andfuture perspectives," Energy Policy, Elsevier, vol. 38(7), pages 3320-3328, July.
  18. Talavera, D.L. & Pérez-Higueras, P. & Ruíz-Arias, J.A. & Fernández, E.F., 2015. "Levelised cost of electricity in high concentrated photovoltaic grid connected systems: Spatial analysis of Spain," Applied Energy, Elsevier, vol. 151(C), pages 49-59.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:924-939. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.