IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v142y2015icp1-9.html
   My bibliography  Save this article

Economic and environmental analysis of a Steam Assisted Gravity Drainage (SAGD) facility for oil recovery from Canadian oil sands

Author

Listed:
  • Giacchetta, Giancarlo
  • Leporini, Mariella
  • Marchetti, Barbara

Abstract

As conventional oil production becomes limited, transportation fuels are being produced from other unconventional fossil resources such as oil sands. Oil sands are a combination of clay, sand, water and bitumen. Vast quantities of oil sands resources have been found worldwide. The largest known reservoir of oil sands in the world is located in the province of Alberta (Canada). Several techniques for the extraction of the oil from oil sands have been developed in recent decades. Steam-Assisted Gravity Drainage (SAGD) is the most promising approach for recovering heavy and viscous oil resources. In SAGD, two closely-spaced horizontal wells, one above the other, form a steam-injector and producer pair. The reservoir oil is heated by the injected steam and drains to the producer under the effect of gravity. First aim of this work is an economic optimization and evaluation of an hypothetical industrial scale facility (named LINK), located in Alberta. All data relating to LINK plant have been obtained from a review of the existing literature references or have been assumed. A Discounted Cash Flow Analysis (DCFA) of LINK plant has been performed. Costs of existing projects have been found in literature. The results show that the hypothetical plant LINK is a profitable investment and that the investment cost has a significant effect on the competitiveness of the LINK facility. Second purpose of the present work is an environmental analysis of the LINK plant: in order to evaluate GHG emissions from LINK plant, a LCA analysis has been carried out. The calculated emissions from oil sand production by SAGD technology have been compared with values relating to conventional crude oil pathways and to recovery and extraction of bitumen through surface mining from literature. The comparison demonstrated that SAGD is a promising technology also from an environmental point of view. An economic–environmental model for SAGD technology optimization has been developed.

Suggested Citation

  • Giacchetta, Giancarlo & Leporini, Mariella & Marchetti, Barbara, 2015. "Economic and environmental analysis of a Steam Assisted Gravity Drainage (SAGD) facility for oil recovery from Canadian oil sands," Applied Energy, Elsevier, vol. 142(C), pages 1-9.
  • Handle: RePEc:eee:appene:v:142:y:2015:i:c:p:1-9
    DOI: 10.1016/j.apenergy.2014.12.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914013142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.12.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2012. "Techno-economic comparison between different technologies for a CCS power generation plant integrated with a sub-bituminous coal mine in Italy," Applied Energy, Elsevier, vol. 99(C), pages 32-39.
    2. Méjean, Aurélie & Hope, Chris, 2008. "Modelling the costs of non-conventional oil: A case study of Canadian bitumen," Energy Policy, Elsevier, vol. 36(11), pages 4205-4216, November.
    3. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    4. Soderbergh, Bengt & Robelius, Fredrik & Aleklett, Kjell, 2007. "A crash programme scenario for the Canadian oil sands industry," Energy Policy, Elsevier, vol. 35(3), pages 1931-1947, March.
    5. Kraemer, Daniel & Bajpayee, Anurag & Muto, Andy & Berube, Vincent & Chiesa, Matteo, 2009. "Solar assisted method for recovery of bitumen from oil sand," Applied Energy, Elsevier, vol. 86(9), pages 1437-1441, September.
    6. Giancarlo Giacchetta & Mariella Leporini & Barbara Marchetti, 2014. "Technical and economic analysis of different cogeneration systems for energy production from biomass," International Journal of Productivity and Quality Management, Inderscience Enterprises Ltd, vol. 13(3), pages 289-309.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Pengliang & Liu, Zhenyi & Li, Mingzhi & Zhao, Yao & Qian, Xinming & Ren, Yuan, 2023. "Investigation on the reaction mechanism of methane combustion near flammability limits at elevated pressures and temperaturaes," Energy, Elsevier, vol. 269(C).
    2. Mikhail Turbakov & Аleksandr Shcherbakov, 2015. "Determination of Enhanced Oil Recovery Candidate Fields in the Volga-Ural Oil and Gas Region Territory," Energies, MDPI, vol. 8(10), pages 1-14, October.
    3. Diego Manfre Jaimes & Ian D. Gates & Matthew Clarke, 2019. "Reducing the Energy and Steam Consumption of SAGD Through Cyclic Solvent Co-Injection," Energies, MDPI, vol. 12(20), pages 1-28, October.
    4. Zhang, Qitao & Liu, Wenchao & Dahi Taleghani, Arash, 2022. "Numerical study on non-Newtonian Bingham fluid flow in development of heavy oil reservoirs using radiofrequency heating method," Energy, Elsevier, vol. 239(PE).
    5. Lazzaroni, Edoardo Filippo & Elsholkami, Mohamed & Arbiv, Itai & Martelli, Emanuele & Elkamel, Ali & Fowler, Michael, 2016. "Energy infrastructure modeling for the oil sands industry: Current situation," Applied Energy, Elsevier, vol. 181(C), pages 435-445.
    6. Leporini, Mariella & Marchetti, Barbara & Corvaro, Francesco & Polonara, Fabio, 2019. "Reconversion of offshore oil and gas platforms into renewable energy sites production: Assessment of different scenarios," Renewable Energy, Elsevier, vol. 135(C), pages 1121-1132.
    7. Ahmadi, Mohammadali & Hou, Qingfeng & Wang, Yuanyuan & Lei, Xuantong & Liu, Benjieming & Chen, Zhangxin, 2023. "Spotlight on reversible emulsification and demulsification of tetradecane-water mixtures using CO2/N2 switchable surfactants: Molecular dynamics (MD) simulation," Energy, Elsevier, vol. 279(C).
    8. Sapkota, Krishna & Oni, Abayomi Olufemi & Kumar, Amit & Linwei, Ma, 2018. "The development of a techno-economic model for the extraction, transportation, upgrading, and shipping of Canadian oil sands products to the Asia-Pacific region," Applied Energy, Elsevier, vol. 223(C), pages 273-292.
    9. Jinze Xu & Zhangxin Chen & Xiaohu Dong & Wei Zhou, 2017. "Effects of Lean Zones on Steam-Assisted Gravity Drainage Performance," Energies, MDPI, vol. 10(4), pages 1-16, April.
    10. Zhao, Renbao & Yu, Shuai & Yang, Jie & Heng, Minghao & Zhang, Chunhui & Wu, Yahong & Zhang, Jianhua & Yue, Xiang-an, 2018. "Optimization of well spacing to achieve a stable combustion during the THAI process," Energy, Elsevier, vol. 151(C), pages 467-477.
    11. Liu, Yongge & Liu, Xiaoyu & Hou, Jian & Li, Huazhou Andy & Liu, Yueliang & Chen, Zhangxin, 2019. "Technical and economic feasibility of a novel heavy oil recovery method: Geothermal energy assisted heavy oil recovery," Energy, Elsevier, vol. 181(C), pages 853-867.
    12. Ashrafi, Omid & Navarri, Philippe & Hughes, Robin & Lu, Dennis, 2016. "Heat recovery optimization in a steam-assisted gravity drainage (SAGD) plant," Energy, Elsevier, vol. 111(C), pages 981-990.
    13. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    14. Li, Jing & Zhang, Lisong & Yang, Feiyue & Sun, Luning, 2020. "Positive measure and potential implication for heavy oil recovery of dip reservoir using SAGD based on numerical analysis," Energy, Elsevier, vol. 193(C).
    15. Cheng, Linsong & Liu, Hao & Huang, Shijun & Wu, Keliu & Chen, Xiao & Wang, Daigang & Xiong, Hao, 2018. "Environmental and economic benefits of Solvent-Assisted Steam-Gravity Drainage for bitumen through horizontal well: A comprehensive modeling analysis," Energy, Elsevier, vol. 164(C), pages 418-431.
    16. Wang, Zhengxu & Gao, Deli & Diao, Binbin & Zhang, Wei, 2020. "The influence of casing properties on performance of radio frequency heating for oil sands recovery," Applied Energy, Elsevier, vol. 261(C).
    17. Zhang, Lisong & Li, Jing & Sun, Luning & Yang, Feiyue, 2021. "An influence mechanism of shale barrier on heavy oil recovery using SAGD based on theoretical and numerical analysis," Energy, Elsevier, vol. 216(C).
    18. Xia, Wenjie & Shen, Weijun & Yu, Li & Zheng, Chenggang & Yu, Weichu & Tang, Yongchun, 2016. "Conversion of petroleum to methane by the indigenous methanogenic consortia for oil recovery in heavy oil reservoir," Applied Energy, Elsevier, vol. 171(C), pages 646-655.
    19. Soiket, Md.I.H. & Oni, A.O. & Gemechu, E.D. & Kumar, A., 2019. "Life cycle assessment of greenhouse gas emissions of upgrading and refining bitumen from the solvent extraction process," Applied Energy, Elsevier, vol. 240(C), pages 236-250.
    20. Liu, Hao & Cheng, Linsong & Wu, Keliu & Huang, Shijun & Maini, Brij B., 2018. "Assessment of energy efficiency and solvent retention inside steam chamber of steam- and solvent-assisted gravity drainage process," Applied Energy, Elsevier, vol. 226(C), pages 287-299.
    21. Rui, Zhenhua & Wang, Xiaoqing & Zhang, Zhien & Lu, Jun & Chen, Gang & Zhou, Xiyu & Patil, Shirish, 2018. "A realistic and integrated model for evaluating oil sands development with Steam Assisted Gravity Drainage technology in Canada," Applied Energy, Elsevier, vol. 213(C), pages 76-91.
    22. Baghernezhad, Danial & Siavashi, Majid & Nakhaee, Ali, 2019. "Optimal scenario design of steam-assisted gravity drainage to enhance oil recovery with temperature and rate control," Energy, Elsevier, vol. 166(C), pages 610-623.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui, Zhenhua & Wang, Xiaoqing & Zhang, Zhien & Lu, Jun & Chen, Gang & Zhou, Xiyu & Patil, Shirish, 2018. "A realistic and integrated model for evaluating oil sands development with Steam Assisted Gravity Drainage technology in Canada," Applied Energy, Elsevier, vol. 213(C), pages 76-91.
    2. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    3. Méjean, Aurélie & Hope, Chris, 2013. "Supplying synthetic crude oil from Canadian oil sands: A comparative study of the costs and CO2 emissions of mining and in-situ recovery," Energy Policy, Elsevier, vol. 60(C), pages 27-40.
    4. Sapkota, Krishna & Oni, Abayomi Olufemi & Kumar, Amit & Linwei, Ma, 2018. "The development of a techno-economic model for the extraction, transportation, upgrading, and shipping of Canadian oil sands products to the Asia-Pacific region," Applied Energy, Elsevier, vol. 223(C), pages 273-292.
    5. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Energy consumption and greenhouse gas emissions in the recovery and extraction of crude bitumen from Canada’s oil sands," Applied Energy, Elsevier, vol. 143(C), pages 189-199.
    6. Njomza Ibrahimi & Alemayehu Gebremedhin & Alketa Sahiti, 2019. "Achieving a Flexible and Sustainable Energy System: The Case of Kosovo," Energies, MDPI, vol. 12(24), pages 1-22, December.
    7. Lazzaroni, Edoardo Filippo & Elsholkami, Mohamed & Arbiv, Itai & Martelli, Emanuele & Elkamel, Ali & Fowler, Michael, 2016. "Energy infrastructure modeling for the oil sands industry: Current situation," Applied Energy, Elsevier, vol. 181(C), pages 435-445.
    8. Sena, Marcelo Fonseca Monteiro de & Rosa, Luiz Pinguelli & Szklo, Alexandre, 2013. "Will Venezuelan extra-heavy oil be a significant source of petroleum in the next decades?," Energy Policy, Elsevier, vol. 61(C), pages 51-59.
    9. Verma, Aman & Kumar, Amit, 2015. "Life cycle assessment of hydrogen production from underground coal gasification," Applied Energy, Elsevier, vol. 147(C), pages 556-568.
    10. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    11. Mohd Yasin, Nazlina Haiza & Maeda, Toshinari & Hu, Anyi & Yu, Chang-Ping & Wood, Thomas K., 2015. "CO2 sequestration by methanogens in activated sludge for methane production," Applied Energy, Elsevier, vol. 142(C), pages 426-434.
    12. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    13. Chi Yong & Mu Tong & Zhongyi Yang & Jixian Zhou, 2023. "Conventional Natural Gas Project Investment and Decision Making under Multiple Uncertainties," Energies, MDPI, vol. 16(5), pages 1-30, February.
    14. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    15. Méjean, Aurélie & Hope, Chris, 2008. "Modelling the costs of non-conventional oil: A case study of Canadian bitumen," Energy Policy, Elsevier, vol. 36(11), pages 4205-4216, November.
    16. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    17. Campbell, Elliott T., 2015. "Emergy analysis of emerging methods of fossil fuel production," Ecological Modelling, Elsevier, vol. 315(C), pages 57-68.
    18. de Castro, Carlos & Miguel, Luis Javier & Mediavilla, Margarita, 2009. "The role of non conventional oil in the attenuation of peak oil," Energy Policy, Elsevier, vol. 37(5), pages 1825-1833, May.
    19. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    20. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:142:y:2015:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.