IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v111y2016icp981-990.html
   My bibliography  Save this article

Heat recovery optimization in a steam-assisted gravity drainage (SAGD) plant

Author

Listed:
  • Ashrafi, Omid
  • Navarri, Philippe
  • Hughes, Robin
  • Lu, Dennis

Abstract

Pinch Analysis was used to improve the energy performance of a typical steam-assisted gravity drainage (SAGD) process. The objective of this work was to reduce the amount of natural gas used for steam generation in the plant and the associated greenhouse gas emissions. The INTEGRATION software was used to analyze how heat is being used in the existing design and identify inefficient heat exchanges causing excessive use of energy. Several modifications to improve the base case heat exchanger network (HEN) were identified. The proposed retrofit projects reduced the process heating demands by improving the existing heat recovery system and by recovering waste heat and decreased natural gas consumption in the steam production unit by approximately 40 MW, representing approximately 8% of total consumption. As a result, the amount of glycol used to transfer energy across the facility was also reduced, as well as the electricity consumption related to glycol pumping. It was shown that the proposed heat recovery projects reduced natural gas costs by C$3.8 million/y and greenhouse gas emissions by 61,700 t/y of CO2.

Suggested Citation

  • Ashrafi, Omid & Navarri, Philippe & Hughes, Robin & Lu, Dennis, 2016. "Heat recovery optimization in a steam-assisted gravity drainage (SAGD) plant," Energy, Elsevier, vol. 111(C), pages 981-990.
  • Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:981-990
    DOI: 10.1016/j.energy.2016.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216307794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giacchetta, Giancarlo & Leporini, Mariella & Marchetti, Barbara, 2015. "Economic and environmental analysis of a Steam Assisted Gravity Drainage (SAGD) facility for oil recovery from Canadian oil sands," Applied Energy, Elsevier, vol. 142(C), pages 1-9.
    2. Ashrafi, Omid & Bédard, Serge & Bakhtiari, Bahador & Poulin, Bruno, 2015. "Heat recovery and heat pumping opportunities in a slaughterhouse," Energy, Elsevier, vol. 89(C), pages 1-13.
    3. Du, S. & Wang, R.Z. & Xia, Z.Z., 2014. "Optimal ammonia water absorption refrigeration cycle with maximum internal heat recovery derived from pinch technology," Energy, Elsevier, vol. 68(C), pages 862-869.
    4. Gadalla, Mamdouh A., 2015. "A new graphical method for Pinch Analysis applications: Heat exchanger network retrofit and energy integration," Energy, Elsevier, vol. 81(C), pages 159-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashrafi, Omid & Bashiri, Hamed & Esmaeili, Amin & Sapoundjiev, Hristo & Navarri, Philippe, 2018. "Ejector integration for the cost effective design of the Selexol™ process," Energy, Elsevier, vol. 162(C), pages 380-392.
    2. Li, Weicheng & Vaziri, Vahid & Aphale, Sumeet S. & Dong, Shimin & Wiercigroch, Marian, 2021. "Energy saving by reducing motor rating of sucker-rod pump systems," Energy, Elsevier, vol. 228(C).
    3. Pang, Zhan-xi & Wu, Zheng-bin & Zhao, Meng, 2017. "A novel method to calculate consumption of non-condensate gas during steam assistant gravity drainage in heavy oil reservoirs," Energy, Elsevier, vol. 130(C), pages 76-85.
    4. Cheng, Linsong & Liu, Hao & Huang, Shijun & Wu, Keliu & Chen, Xiao & Wang, Daigang & Xiong, Hao, 2018. "Environmental and economic benefits of Solvent-Assisted Steam-Gravity Drainage for bitumen through horizontal well: A comprehensive modeling analysis," Energy, Elsevier, vol. 164(C), pages 418-431.
    5. Soiket, Md.I.H. & Oni, A.O. & Kumar, A., 2019. "The development of a process simulation model for energy consumption and greenhouse gas emissions of a vapor solvent-based oil sands extraction and recovery process," Energy, Elsevier, vol. 173(C), pages 799-808.
    6. Liu, Hao & Cheng, Linsong & Wu, Keliu & Huang, Shijun & Maini, Brij B., 2018. "Assessment of energy efficiency and solvent retention inside steam chamber of steam- and solvent-assisted gravity drainage process," Applied Energy, Elsevier, vol. 226(C), pages 287-299.
    7. Wang, Hai & Wang, Haiying & Zhu, Tong & Deng, Wanli, 2017. "A novel model for steam transportation considering drainage loss in pipeline networks," Applied Energy, Elsevier, vol. 188(C), pages 178-189.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashrafi, Omid & Bédard, Serge & Bakhtiari, Bahador & Poulin, Bruno, 2015. "Heat recovery and heat pumping opportunities in a slaughterhouse," Energy, Elsevier, vol. 89(C), pages 1-13.
    2. Fu, Chao & Gundersen, Truls, 2016. "Correct integration of compressors and expanders in above ambient heat exchanger networks," Energy, Elsevier, vol. 116(P2), pages 1282-1293.
    3. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2019. "Customised retrofit of heat exchanger network combining area distribution and targeted investment," Energy, Elsevier, vol. 179(C), pages 1054-1066.
    4. Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
    5. Vela-García, Nicolas & Bolonio, David & Mosquera, Ana María & Ortega, Marcelo F. & García-Martínez, María-Jesús & Canoira, Laureano, 2020. "Techno-economic and life cycle assessment of triisobutane production and its suitability as biojet fuel," Applied Energy, Elsevier, vol. 268(C).
    6. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    7. Li, Jing & Zhang, Lisong & Yang, Feiyue & Sun, Luning, 2020. "Positive measure and potential implication for heavy oil recovery of dip reservoir using SAGD based on numerical analysis," Energy, Elsevier, vol. 193(C).
    8. Chauhan, Shivendra Singh & Khanam, Shabina, 2019. "Enhancement of efficiency for steam cycle of thermal power plants using process integration," Energy, Elsevier, vol. 173(C), pages 364-373.
    9. Zhang, Lisong & Li, Jing & Sun, Luning & Yang, Feiyue, 2021. "An influence mechanism of shale barrier on heavy oil recovery using SAGD based on theoretical and numerical analysis," Energy, Elsevier, vol. 216(C).
    10. Zdeněk Jegla & Vít Freisleben, 2020. "Practical Energy Retrofit of Heat Exchanger Network Not Containing Utility Path," Energies, MDPI, vol. 13(11), pages 1-16, May.
    11. Aboelazayem, Omar & Gadalla, Mamdouh & Alhajri, Ibrahim & Saha, Basudeb, 2021. "Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery via organic Rankine cycle (ORC)," Renewable Energy, Elsevier, vol. 164(C), pages 433-443.
    12. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    13. Diego Manfre Jaimes & Ian D. Gates & Matthew Clarke, 2019. "Reducing the Energy and Steam Consumption of SAGD Through Cyclic Solvent Co-Injection," Energies, MDPI, vol. 12(20), pages 1-28, October.
    14. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Xuan Tao & Dhinesh Thanganadar & Kumar Patchigolla, 2022. "Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance," Energies, MDPI, vol. 15(18), pages 1-28, September.
    16. Wang, Yufei & Zhan, Shihui & Feng, Xiao, 2015. "Optimization of velocity for energy saving and mitigating fouling in a crude oil preheat train with fixed network structure," Energy, Elsevier, vol. 93(P2), pages 1478-1488.
    17. Chen, X. & Wang, R.Z. & Du, S., 2017. "Heat integration of ammonia-water absorption refrigeration system through heat-exchanger network analysis," Energy, Elsevier, vol. 141(C), pages 1585-1599.
    18. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    19. Jia, Teng & Dai, Enqian & Dai, Yanjun, 2019. "Thermodynamic analysis and optimization of a balanced-type single-stage NH3-H2O absorption-resorption heat pump cycle for residential heating application," Energy, Elsevier, vol. 171(C), pages 120-134.
    20. Lal, Nathan S. & Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2018. "A novel Heat Exchanger Network Bridge Retrofit method using the Modified Energy Transfer Diagram," Energy, Elsevier, vol. 155(C), pages 190-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:981-990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.