IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v240y2019icp236-250.html
   My bibliography  Save this article

Life cycle assessment of greenhouse gas emissions of upgrading and refining bitumen from the solvent extraction process

Author

Listed:
  • Soiket, Md.I.H.
  • Oni, A.O.
  • Gemechu, E.D.
  • Kumar, A.

Abstract

The vapor solvent extraction process is one of the newly proposed bitumen extraction methods that use less energy and emit fewer greenhouse gases than conventional approaches. Through life cycle assessment, this paper examines the energy requirements and associated greenhouse gas emissions of three pathways of producing transportation fuels from the solvent extraction process: delayed coking upgrading, hydroconversion upgrading, and direct refining processes. A Monte Carlo simulation was performed to determine the uncertainty in the model input parameters. The hydroconversion pathway was found to be more energy- and emissions-intensive (1.03 GJ/bbl and 138.2 kg CO2 eq./bbl) than delayed coking upgrading (0.86 GJ/bbl and 92.3 kg CO2 eq./bbl) and direct refining (0.74 GJ/bbl and, 84.6 CO2 eq./bbl), but it offers a higher yield than delayed coker upgrading. Direct refining of bitumen from a vapor solvent extraction process reduces the overall life cycle emissions of transportation fuels.

Suggested Citation

  • Soiket, Md.I.H. & Oni, A.O. & Gemechu, E.D. & Kumar, A., 2019. "Life cycle assessment of greenhouse gas emissions of upgrading and refining bitumen from the solvent extraction process," Applied Energy, Elsevier, vol. 240(C), pages 236-250.
  • Handle: RePEc:eee:appene:v:240:y:2019:i:c:p:236-250
    DOI: 10.1016/j.apenergy.2019.02.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919303368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Energy consumption and greenhouse gas emissions in upgrading and refining of Canada's oil sands products," Energy, Elsevier, vol. 83(C), pages 65-79.
    2. Lazzaroni, Edoardo Filippo & Elsholkami, Mohamed & Arbiv, Itai & Martelli, Emanuele & Elkamel, Ali & Fowler, Michael, 2016. "Energy infrastructure modeling for the oil sands industry: Current situation," Applied Energy, Elsevier, vol. 181(C), pages 435-445.
    3. Giacchetta, Giancarlo & Leporini, Mariella & Marchetti, Barbara, 2015. "Economic and environmental analysis of a Steam Assisted Gravity Drainage (SAGD) facility for oil recovery from Canadian oil sands," Applied Energy, Elsevier, vol. 142(C), pages 1-9.
    4. Bera, Achinta & Babadagli, Tayfun, 2015. "Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review," Applied Energy, Elsevier, vol. 151(C), pages 206-226.
    5. Chen, Q.L. & Yin, Q.H. & Wang, S.P. & Hua, B., 2004. "Energy-use analysis and improvement for delayed coking units," Energy, Elsevier, vol. 29(12), pages 2225-2237.
    6. Szklo, Alexandre & Schaeffer, Roberto, 2007. "Fuel specification, energy consumption and CO2 emission in oil refineries," Energy, Elsevier, vol. 32(7), pages 1075-1092.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xiaohu & Guo, Junfei & Yang, Bo & Cheng, Haonan & Wei, Pan & He, Ya-Ling, 2020. "Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui, Zhenhua & Wang, Xiaoqing & Zhang, Zhien & Lu, Jun & Chen, Gang & Zhou, Xiyu & Patil, Shirish, 2018. "A realistic and integrated model for evaluating oil sands development with Steam Assisted Gravity Drainage technology in Canada," Applied Energy, Elsevier, vol. 213(C), pages 76-91.
    2. Sapkota, Krishna & Oni, Abayomi Olufemi & Kumar, Amit & Linwei, Ma, 2018. "The development of a techno-economic model for the extraction, transportation, upgrading, and shipping of Canadian oil sands products to the Asia-Pacific region," Applied Energy, Elsevier, vol. 223(C), pages 273-292.
    3. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    4. Liu, Hao & Cheng, Linsong & Wu, Keliu & Huang, Shijun & Maini, Brij B., 2018. "Assessment of energy efficiency and solvent retention inside steam chamber of steam- and solvent-assisted gravity drainage process," Applied Energy, Elsevier, vol. 226(C), pages 287-299.
    5. Wang, Zhengxu & Gao, Deli & Diao, Binbin & Zhang, Wei, 2020. "The influence of casing properties on performance of radio frequency heating for oil sands recovery," Applied Energy, Elsevier, vol. 261(C).
    6. Zhang, Qitao & Liu, Wenchao & Dahi Taleghani, Arash, 2022. "Numerical study on non-Newtonian Bingham fluid flow in development of heavy oil reservoirs using radiofrequency heating method," Energy, Elsevier, vol. 239(PE).
    7. Bussman, W.R. & Baukal, C.E., 2009. "Ambient condition effects on process heater efficiency," Energy, Elsevier, vol. 34(10), pages 1624-1635.
    8. Xia, Wenjie & Shen, Weijun & Yu, Li & Zheng, Chenggang & Yu, Weichu & Tang, Yongchun, 2016. "Conversion of petroleum to methane by the indigenous methanogenic consortia for oil recovery in heavy oil reservoir," Applied Energy, Elsevier, vol. 171(C), pages 646-655.
    9. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    10. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    11. Gomes, Gabriel Lourenço & Szklo, Alexandre & Schaeffer, Roberto, 2009. "The impact of CO2 taxation on the configuration of new refineries: An application to Brazil," Energy Policy, Elsevier, vol. 37(12), pages 5519-5529, December.
    12. Silva, J.A.M. & Flórez-Orrego, D. & Oliveira, S., 2014. "An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels," Energy, Elsevier, vol. 67(C), pages 490-495.
    13. Klemeš, Jiří Jaromír & Kravanja, Zdravko & Varbanov, Petar Sabev & Lam, Hon Loong, 2013. "Advanced multimedia engineering education in energy, process integration and optimisation," Applied Energy, Elsevier, vol. 101(C), pages 33-40.
    14. Gavenas, Ekaterina & Rosendahl, Knut Einar & Skjerpen, Terje, 2015. "CO2-emissions from Norwegian oil and gas extraction," Energy, Elsevier, vol. 90(P2), pages 1956-1966.
    15. Pombo, Felipe Ramalho & Magrini, Alessandra & Szklo, Alexandre, 2013. "An analysis of water management in Brazilian petroleum refineries using rationalization techniques," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 172-179.
    16. Faraz Qasim & Doug Hyung Lee & Jongkuk Won & Jin-Kuk Ha & Sang Jin Park, 2021. "Development of Advanced Advisory System for Anomalies (AAA) to Predict and Detect the Abnormal Operation in Fired Heaters for Real Time Process Safety and Optimization," Energies, MDPI, vol. 14(21), pages 1-24, November.
    17. Thambiran, Tirusha & Diab, Roseanne D., 2011. "Air quality and climate change co-benefits for the industrial sector in Durban, South Africa," Energy Policy, Elsevier, vol. 39(10), pages 6658-6666, October.
    18. Yao, Yue & Sun, Deqiang & Xu, Jin-Hua & Wang, Bin & Peng, Guohong & Sun, Bingmei, 2023. "Evaluation of enhanced oil recovery methods for mature continental heavy oil fields in China based on geology, technology and sustainability criteria," Energy, Elsevier, vol. 278(PB).
    19. Mikhail Turbakov & Аleksandr Shcherbakov, 2015. "Determination of Enhanced Oil Recovery Candidate Fields in the Volga-Ural Oil and Gas Region Territory," Energies, MDPI, vol. 8(10), pages 1-14, October.
    20. Daria Surovtseva & Enda Crossin & Robert Pell & Laurence Stamford, 2022. "Toward a life cycle inventory for graphite production," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 964-979, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:240:y:2019:i:c:p:236-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.