IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v223y2018icp273-292.html
   My bibliography  Save this article

The development of a techno-economic model for the extraction, transportation, upgrading, and shipping of Canadian oil sands products to the Asia-Pacific region

Author

Listed:
  • Sapkota, Krishna
  • Oni, Abayomi Olufemi
  • Kumar, Amit
  • Linwei, Ma

Abstract

The diversification of Canadian oil sands markets is imperative for the long-term economic growth of oil sands products. To ensure a competitive place in the global market, supply chain costs of oil sands must be as low as possible. This study conducts a comparative techno-economic analysis of potential pathways for the transportation of Canadian oil sands products (synthetic crude oil and diluted bitumen) to seaport destinations in the Asia-Pacific region. We developed data-intensive techno-economic models to estimate total supply chain costs from the production site in Alberta to ports in China, Japan, and India. Four pathways were developed using production (steam assisted gravity drainage), transportation (production-upgrader-port in Vancouver), upgrading, and shipping operations. A sensitivity analysis was conducted to identify cost ranges with their occurrence probability measures and evaluate the effect of key parameters for each stage of operation. Supply chain costs (C$ per barrel of bitumen) to China, Japan, and India are from 61–87, 60–86, and 62–90, respectively. Overall supply chain costs of dilbit (a blend of bitumen and diluent) and synthetic crude oil (SCO) are affected most by production and upgrading costs. The production and upgrading costs are influenced by capital cost, while pipeline lifetime and capacity highly impact transportation (pipeline) and shipping costs, respectively. The developed models can be used to predict total supply chain costs of different pathways in Canadian oil sand markets.

Suggested Citation

  • Sapkota, Krishna & Oni, Abayomi Olufemi & Kumar, Amit & Linwei, Ma, 2018. "The development of a techno-economic model for the extraction, transportation, upgrading, and shipping of Canadian oil sands products to the Asia-Pacific region," Applied Energy, Elsevier, vol. 223(C), pages 273-292.
  • Handle: RePEc:eee:appene:v:223:y:2018:i:c:p:273-292
    DOI: 10.1016/j.apenergy.2018.04.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918306056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.04.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verma, Aman & Nimana, Balwinder & Olateju, Babatunde & Rahman, Md. Mustafizur & Radpour, Saeidreza & Canter, Christina & Subramanyam, Veena & Paramashivan, Deepak & Vaezi, Mahdi & Kumar, Amit, 2017. "A techno-economic assessment of bitumen and synthetic crude oil transport (SCO) in the Canadian oil sands industry: Oil via rail or pipeline?," Energy, Elsevier, vol. 124(C), pages 665-683.
    2. David Hackett & Leigh Noda & Susan W. Grissom & Michal C. Moore & Jennifer Winter, 2013. "Pacific Basin Heavy Oil Refining Capacity," SPP Research Papers, The School of Public Policy, University of Calgary, vol. 6(8), February.
    3. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Energy consumption and greenhouse gas emissions in upgrading and refining of Canada's oil sands products," Energy, Elsevier, vol. 83(C), pages 65-79.
    4. Méjean, Aurélie & Hope, Chris, 2008. "Modelling the costs of non-conventional oil: A case study of Canadian bitumen," Energy Policy, Elsevier, vol. 36(11), pages 4205-4216, November.
    5. Rudyk, Svetlana & Spirov, Pavel, 2014. "Upgrading and extraction of bitumen from Nigerian tar sand by supercritical carbon dioxide," Applied Energy, Elsevier, vol. 113(C), pages 1397-1404.
    6. Giacchetta, Giancarlo & Leporini, Mariella & Marchetti, Barbara, 2015. "Economic and environmental analysis of a Steam Assisted Gravity Drainage (SAGD) facility for oil recovery from Canadian oil sands," Applied Energy, Elsevier, vol. 142(C), pages 1-9.
    7. Li, Weiqi & Fu, Feng & Ma, Linwei & Liu, Pei & Li, Zheng & Dai, Yaping, 2013. "A process-based model for estimating the well-to-tank cost of gasoline and diesel in China," Applied Energy, Elsevier, vol. 102(C), pages 718-725.
    8. Tarnoczi, Tyler, 2013. "Life cycle energy and greenhouse gas emissions from transportation of Canadian oil sands to future markets," Energy Policy, Elsevier, vol. 62(C), pages 107-117.
    9. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    10. Kapadia, Punitkumar R. & Wang, Jingyi (Jacky) & Kallos, Michael S. & Gates, Ian D., 2013. "Practical process design for in situ gasification of bitumen," Applied Energy, Elsevier, vol. 107(C), pages 281-296.
    11. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Energy consumption and greenhouse gas emissions in the recovery and extraction of crude bitumen from Canada’s oil sands," Applied Energy, Elsevier, vol. 143(C), pages 189-199.
    12. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Life cycle assessment of greenhouse gas emissions from Canada's oil sands-derived transportation fuels," Energy, Elsevier, vol. 88(C), pages 544-554.
    13. Betancourt-Torcat, Alberto & Elkamel, Ali & Ricardez-Sandoval, Luis, 2012. "A modeling study of the effect of carbon dioxide mitigation strategies, natural gas prices and steam consumption on the Canadian Oil Sands operations," Energy, Elsevier, vol. 45(1), pages 1018-1033.
    14. Olateju, Babatunde & Kumar, Amit, 2011. "Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands," Energy, Elsevier, vol. 36(11), pages 6326-6339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omidkar, Ali & Haddadian, Kamran & Es'haghian, Razieh & Alagumalai, Avinash & Li, Zhaofei & Song, Hua, 2024. "Novel energy efficient in-situ bitumen upgrading technology to facilitate pipeline transportation using natural gas: Sustainability evaluation using a new hybrid approach based on fuzzy multi-criteria," Energy, Elsevier, vol. 297(C).
    2. Wadim Strielkowski & Irina Firsova & Inna Lukashenko & Jurgita Raudeliūnienė & Manuela Tvaronavičienė, 2021. "Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    3. Rui Xing & Diego V. Chiappori & Evan J. Arbuckle & Matthew T. Binsted & Evan G. R. Davies, 2021. "Canadian Oil Sands Extraction and Upgrading: A Synthesis of the Data on Energy Consumption, CO 2 Emissions, and Supply Costs," Energies, MDPI, vol. 14(19), pages 1-14, October.
    4. Radpour, Saeidreza & Gemechu, Eskinder & Ahiduzzaman, Md & Kumar, Amit, 2021. "Development of a framework for the assessment of the market penetration of novel in situ bitumen extraction technologies," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lazzaroni, Edoardo Filippo & Elsholkami, Mohamed & Arbiv, Itai & Martelli, Emanuele & Elkamel, Ali & Fowler, Michael, 2016. "Energy infrastructure modeling for the oil sands industry: Current situation," Applied Energy, Elsevier, vol. 181(C), pages 435-445.
    2. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    3. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Energy consumption and greenhouse gas emissions in the recovery and extraction of crude bitumen from Canada’s oil sands," Applied Energy, Elsevier, vol. 143(C), pages 189-199.
    4. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Life cycle assessment of greenhouse gas emissions from Canada's oil sands-derived transportation fuels," Energy, Elsevier, vol. 88(C), pages 544-554.
    5. Rahman, Md. Mustafizur & Canter, Christina & Kumar, Amit, 2015. "Well-to-wheel life cycle assessment of transportation fuels derived from different North American conventional crudes," Applied Energy, Elsevier, vol. 156(C), pages 159-173.
    6. Guo, John & Orellana, Andrea & Sleep, Sylvia & Laurenzi, Ian J. & MacLean, Heather L. & Bergerson, Joule A., 2020. "Statistically enhanced model of oil sands operations: Well-to-wheel comparison of in situ oil sands pathways," Energy, Elsevier, vol. 208(C).
    7. Di Lullo, Giovanni & Zhang, Hao & Kumar, Amit, 2017. "Uncertainty in well-to-tank with combustion greenhouse gas emissions of transportation fuels derived from North American crudes," Energy, Elsevier, vol. 128(C), pages 475-486.
    8. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Energy consumption and greenhouse gas emissions in upgrading and refining of Canada's oil sands products," Energy, Elsevier, vol. 83(C), pages 65-79.
    9. Gavenas, Ekaterina & Rosendahl, Knut Einar & Skjerpen, Terje, 2015. "CO2-emissions from Norwegian oil and gas extraction," Energy, Elsevier, vol. 90(P2), pages 1956-1966.
    10. Rui, Zhenhua & Wang, Xiaoqing & Zhang, Zhien & Lu, Jun & Chen, Gang & Zhou, Xiyu & Patil, Shirish, 2018. "A realistic and integrated model for evaluating oil sands development with Steam Assisted Gravity Drainage technology in Canada," Applied Energy, Elsevier, vol. 213(C), pages 76-91.
    11. Radpour, Saeidreza & Gemechu, Eskinder & Ahiduzzaman, Md & Kumar, Amit, 2021. "Development of a framework for the assessment of the market penetration of novel in situ bitumen extraction technologies," Energy, Elsevier, vol. 220(C).
    12. Hongtao Liu & Feng Chen & Yuanyuan Wang & Gang Liu & Hong Yao & Shuqin Liu, 2018. "Experimental Study of Reverse Underground Coal Gasification," Energies, MDPI, vol. 11(11), pages 1-13, October.
    13. Rui Xing & Diego V. Chiappori & Evan J. Arbuckle & Matthew T. Binsted & Evan G. R. Davies, 2021. "Canadian Oil Sands Extraction and Upgrading: A Synthesis of the Data on Energy Consumption, CO 2 Emissions, and Supply Costs," Energies, MDPI, vol. 14(19), pages 1-14, October.
    14. Zhao, Renbao & Yu, Shuai & Yang, Jie & Heng, Minghao & Zhang, Chunhui & Wu, Yahong & Zhang, Jianhua & Yue, Xiang-an, 2018. "Optimization of well spacing to achieve a stable combustion during the THAI process," Energy, Elsevier, vol. 151(C), pages 467-477.
    15. Olateju, Babatunde & Kumar, Amit, 2016. "A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands," Energy, Elsevier, vol. 115(P1), pages 604-614.
    16. Liu, Hao & Cheng, Linsong & Wu, Keliu & Huang, Shijun & Maini, Brij B., 2018. "Assessment of energy efficiency and solvent retention inside steam chamber of steam- and solvent-assisted gravity drainage process," Applied Energy, Elsevier, vol. 226(C), pages 287-299.
    17. Soiket, Md.I.H. & Oni, A.O. & Gemechu, E.D. & Kumar, A., 2019. "Life cycle assessment of greenhouse gas emissions of upgrading and refining bitumen from the solvent extraction process," Applied Energy, Elsevier, vol. 240(C), pages 236-250.
    18. Si, Minxing & Bai, Ling & Du, Ke, 2021. "Fuel consumption analysis and cap and trade system evaluation for Canadian in situ oil sands extraction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    19. Cheng, Linsong & Liu, Hao & Huang, Shijun & Wu, Keliu & Chen, Xiao & Wang, Daigang & Xiong, Hao, 2018. "Environmental and economic benefits of Solvent-Assisted Steam-Gravity Drainage for bitumen through horizontal well: A comprehensive modeling analysis," Energy, Elsevier, vol. 164(C), pages 418-431.
    20. Babkir Ali, 2020. "Integration of Impacts on Water, Air, Land, and Cost towards Sustainable Petroleum Oil Production in Alberta, Canada," Resources, MDPI, vol. 9(6), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:223:y:2018:i:c:p:273-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.