IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4753-d297470.html
   My bibliography  Save this article

Achieving a Flexible and Sustainable Energy System: The Case of Kosovo

Author

Listed:
  • Njomza Ibrahimi

    (Department of Electric Power Engineering of University of Pristina “Hasan Prishtina”, 10000 Pristina, Kosovo
    Department of Manufacturing and Civil Engineering of Norwegian University of Science and Technology, Teknologivegen 22, 2815 Gjøvik, Norway
    Universite de Pau et des Pays de l’Adour, SIAME, E2S UPPA Pau, France)

  • Alemayehu Gebremedhin

    (Department of Manufacturing and Civil Engineering of Norwegian University of Science and Technology, Teknologivegen 22, 2815 Gjøvik, Norway)

  • Alketa Sahiti

    (Department of Electric Power Engineering of University of Pristina “Hasan Prishtina”, 10000 Pristina, Kosovo
    Department of Manufacturing and Civil Engineering of Norwegian University of Science and Technology, Teknologivegen 22, 2815 Gjøvik, Norway)

Abstract

In today’s energy system, the diffusion of renewable-based technologies is accelerating rapidly. Development of mechanisms that support the large-scale deployment of renewables towards global warming and climate change mitigation continues to remain an issue of utter importance. The most important challenges the energy system of Kosovo faces today is the difficulty to meet all the demand for electricity, low operating efficiency and high release of greenhouse gas emissions, but specifically a large source of carbon dioxide (CO 2 ). Consequently, this influences not only the stability of the system but the society as a whole. This paper addresses several possibilities for designing an adaptable energy system in Kosovo with the ability to balance electricity supply and demand which will meet the requirements for a more efficient, reliable and secure system. A new way of energy generating through integration of new renewable and non-renewable technologies is developed using the EnergyPLAN model. The system is based on available technologies: existing hydro, wind, photovoltaic (PV), combined heat and power (CHP) and new solar thermal, heat pumps and biomass. The baseline scenario 2015 was expanded by four additional scenarios, two for the year 2030 and two for the year 2050. The contribution of renewable sources in the primary energy supply (PES) in the performed scenarios was 14.8%, 34.1%, 38.4%, 69.7% and 68.3% respectively. Further, a very important component of this paper is the investigation of integrating carbon capture and sequestration (CCS) technology in the coal-based power plant as part of the analysis in the second scenario for 2050. The shift to zero-carbon energy system in Kosovo requires additional research and assessment in order to identify the untapped potential of renewable sources. However, from the results obtained it can be concluded that the goal of a secure, competitive and sustainable energy system in Kosovo state which will meet its long-term energy needs can be certainly achieved.

Suggested Citation

  • Njomza Ibrahimi & Alemayehu Gebremedhin & Alketa Sahiti, 2019. "Achieving a Flexible and Sustainable Energy System: The Case of Kosovo," Energies, MDPI, vol. 12(24), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4753-:d:297470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang, Xi & Reiner, David & Li, Jia, 2011. "Perceptions of opinion leaders towards CCS demonstration projects in China," Applied Energy, Elsevier, vol. 88(5), pages 1873-1885, May.
    2. Zhu, Lei & Fan, Ying, 2011. "A real options–based CCS investment evaluation model: Case study of China’s power generation sector," Applied Energy, Elsevier, vol. 88(12), pages 4320-4333.
    3. Buran, B. & Butler, L. & Currano, A. & Smith, E. & Tung, W. & Cleveland, K. & Buxton, C. & Lam, D. & Obler, T. & Rais-Bahrami, S. & Stryker, M. & Herold, K., 2003. "Environmental benefits of implementing alternative energy technologies in developing countries," Applied Energy, Elsevier, vol. 76(1-3), pages 89-100, September.
    4. Nie, S. & Huang, Z.C. & Huang, G.H. & Yu, L. & Liu, J., 2018. "Optimization of electric power systems with cost minimization and environmental-impact mitigation under multiple uncertainties," Applied Energy, Elsevier, vol. 221(C), pages 249-267.
    5. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    6. Arnette, Andrew N., 2017. "Renewable energy and carbon capture and sequestration for a reduced carbon energy plan: An optimization model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 254-265.
    7. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2012. "Techno-economic comparison between different technologies for a CCS power generation plant integrated with a sub-bituminous coal mine in Italy," Applied Energy, Elsevier, vol. 99(C), pages 32-39.
    8. Sáfián, Fanni, 2014. "Modelling the Hungarian energy system – The first step towards sustainable energy planning," Energy, Elsevier, vol. 69(C), pages 58-66.
    9. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    10. Li, H. & Yan, J., 2009. "Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes," Applied Energy, Elsevier, vol. 86(12), pages 2760-2770, December.
    11. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    12. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    13. Dincer, Ibrahim, 2000. "Renewable energy and sustainable development: a crucial review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 157-175, June.
    14. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
    15. McFarland, James R. & Herzog, Howard J., 2006. "Incorporating carbon capture and storage technologies in integrated assessment models," Energy Economics, Elsevier, vol. 28(5-6), pages 632-652, November.
    16. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    17. Elliston, Ben & Diesendorf, Mark & MacGill, Iain, 2012. "Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 45(C), pages 606-613.
    18. Jebaselvi, G.D. Anbarasi & Paramasivam, S., 2013. "Analysis on renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 625-634.
    19. Duan, Hong-Bo & Fan, Ying & Zhu, Lei, 2013. "What’s the most cost-effective policy of CO2 targeted reduction: An application of aggregated economic technological model with CCS?," Applied Energy, Elsevier, vol. 112(C), pages 866-875.
    20. Michael Child & Alexander Nordling & Christian Breyer, 2018. "The Impacts of High V2G Participation in a 100% Renewable Åland Energy System," Energies, MDPI, vol. 11(9), pages 1-19, August.
    21. Li, Mu & Rao, Ashok D. & Scott Samuelsen, G., 2012. "Performance and costs of advanced sustainable central power plants with CCS and H2 co-production," Applied Energy, Elsevier, vol. 91(1), pages 43-50.
    22. Siefert, Nicholas S. & Chang, Brian Y. & Litster, Shawn, 2014. "Exergy and economic analysis of a CaO-looping gasifier for IGFC–CCS and IGCC–CCS," Applied Energy, Elsevier, vol. 128(C), pages 230-245.
    23. Viebahn, Peter & Daniel, Vallentin & Samuel, Höller, 2012. "Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies," Applied Energy, Elsevier, vol. 97(C), pages 238-248.
    24. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible," Energy, Elsevier, vol. 35(5), pages 2164-2173.
    25. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    26. Ćosić, Boris & Krajačić, Goran & Duić, Neven, 2012. "A 100% renewable energy system in the year 2050: The case of Macedonia," Energy, Elsevier, vol. 48(1), pages 80-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Meha, Drilon & Pfeifer, Antun & Duić, Neven & Lund, Henrik, 2020. "Increasing the integration of variable renewable energy in coal-based energy system using power to heat technologies: The case of Kosovo," Energy, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    2. Fan, Jing-Li & Xu, Mao & Li, Fengyu & Yang, Lin & Zhang, Xian, 2018. "Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective," Applied Energy, Elsevier, vol. 229(C), pages 326-334.
    3. Zhang, Xian & Wang, Xingwei & Chen, Jiajun & Xie, Xi & Wang, Ke & Wei, Yiming, 2014. "A novel modeling based real option approach for CCS investment evaluation under multiple uncertainties," Applied Energy, Elsevier, vol. 113(C), pages 1059-1067.
    4. Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.
    5. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    6. Lee, Jaehee & Han, Sang-Jun & Wee, Jung-Ho, 2014. "Synthesis of dry sorbents for carbon dioxide capture using coal fly ash and its performance," Applied Energy, Elsevier, vol. 131(C), pages 40-47.
    7. Olav H. Hohmeyer & Sönke Bohm, 2015. "Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 74-97, January.
    8. Zhang, Shuwei & Bauer, Nico & Luderer, Gunnar & Kriegler, Elmar, 2014. "Role of technologies in energy-related CO2 mitigation in China within a climate-protection world: A scenarios analysis using REMIND," Applied Energy, Elsevier, vol. 115(C), pages 445-455.
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2015. "Long term outlook of primary energy consumption of the Italian thermoelectric sector: Impact of fuel and carbon prices," Energy, Elsevier, vol. 87(C), pages 153-164.
    11. Fernandes, Liliana & Ferreira, Paula, 2014. "Renewable energy scenarios in the Portuguese electricity system," Energy, Elsevier, vol. 69(C), pages 51-57.
    12. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    13. Chen, Shiyi & Xiang, Wenguo & Wang, Dong & Xue, Zhipeng, 2012. "Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture," Applied Energy, Elsevier, vol. 95(C), pages 285-294.
    14. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    15. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2014. "Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 66(C), pages 196-204.
    16. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    17. Zakeri, Behnam & Syri, Sanna & Rinne, Samuli, 2015. "Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?," Energy, Elsevier, vol. 92(P3), pages 244-259.
    18. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    19. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    20. Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian, 2015. "A multi-region optimization planning model for China’s power sector," Applied Energy, Elsevier, vol. 137(C), pages 413-426.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4753-:d:297470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.