IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp853-867.html
   My bibliography  Save this article

Technical and economic feasibility of a novel heavy oil recovery method: Geothermal energy assisted heavy oil recovery

Author

Listed:
  • Liu, Yongge
  • Liu, Xiaoyu
  • Hou, Jian
  • Li, Huazhou Andy
  • Liu, Yueliang
  • Chen, Zhangxin

Abstract

Conventional hot water flooding generally has disadvantages of high energy consumption and large capital expenses. To improve the economy of hot water flooding, a novel geothermal energy assisted heavy oil recovery method is presented. To validate this idea, a numerical simulation study is conducted to analyze the performance of the heat exchange well and heavy oil recovery process. Furthermore, the new method and conventional hot water flooding are compared to examine the economic feasibility of this new method based on the financial net present value. Finally, factors that may affect the feasibility of this new method are discussed. The simulation results show that compared with cold water flooding, the new method can increase heavy oil recovery by more than 7%. Moreover, the financial net present values of the new method at different oil prices all surpass those of the conventional water flooding, and thus the new method proposed is feasible both technically and economically. The analysis on the factors affecting the feasibility reveals that the critical oil price (the oil price when the financial net present value equals 0) of the new method decreases with increasing heavy oil reservoir thickness, decreasing oil viscosity, permeability variation coefficient and initial reservoir pressure.

Suggested Citation

  • Liu, Yongge & Liu, Xiaoyu & Hou, Jian & Li, Huazhou Andy & Liu, Yueliang & Chen, Zhangxin, 2019. "Technical and economic feasibility of a novel heavy oil recovery method: Geothermal energy assisted heavy oil recovery," Energy, Elsevier, vol. 181(C), pages 853-867.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:853-867
    DOI: 10.1016/j.energy.2019.05.207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219310953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giacchetta, Giancarlo & Leporini, Mariella & Marchetti, Barbara, 2015. "Economic and environmental analysis of a Steam Assisted Gravity Drainage (SAGD) facility for oil recovery from Canadian oil sands," Applied Energy, Elsevier, vol. 142(C), pages 1-9.
    2. Kujawa, Tomasz & Nowak, Władysław & Stachel, Aleksander A., 2006. "Utilization of existing deep geological wells for acquisitions of geothermal energy," Energy, Elsevier, vol. 31(5), pages 650-664.
    3. Wang, Qingfeng & Sun, Xu, 2017. "Crude oil price: Demand, supply, economic activity, economic policy uncertainty and wars – From the perspective of structural equation modelling (SEM)," Energy, Elsevier, vol. 133(C), pages 483-490.
    4. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Zheng, Tianyu & Luo, Bing & Li, Jing & Yu, Rui, 2019. "Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China," Energy, Elsevier, vol. 174(C), pages 861-872.
    5. Davis, Adelina P. & Michaelides, Efstathios E., 2009. "Geothermal power production from abandoned oil wells," Energy, Elsevier, vol. 34(7), pages 866-872.
    6. Zhang, Liang & Li, Xin & Zhang, Yin & Cui, Guodong & Tan, Chunyang & Ren, Shaoran, 2017. "CO2 injection for geothermal development associated with EGR and geological storage in depleted high-temperature gas reservoirs," Energy, Elsevier, vol. 123(C), pages 139-148.
    7. Bu, Xianbiao & Ma, Weibin & Li, Huashan, 2012. "Geothermal energy production utilizing abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 41(C), pages 80-85.
    8. Cui, Guodong & Ren, Shaoran & Zhang, Liang & Ezekiel, Justin & Enechukwu, Chioma & Wang, Yi & Zhang, Rui, 2017. "Geothermal exploitation from hot dry rocks via recycling heat transmission fluid in a horizontal well," Energy, Elsevier, vol. 128(C), pages 366-377.
    9. Sun, Fengrui & Li, Chunlan & Cheng, Linsong & Huang, Shijun & Zou, Ming & Sun, Qun & Wu, Xiaojun, 2017. "Production performance analysis of heavy oil recovery by cyclic superheated steam stimulation," Energy, Elsevier, vol. 121(C), pages 356-371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alade, Olalekan S. & Mahmoud, Mohamed & Al Shehri, Dhafer & Mokheimer, Esmail M.A. & Sasaki, Kyuro & Ohashi, Ryo & Kamal, Muhammad Shahzad & Muhammad, Isah & Al-Nakhli, Ayman, 2022. "Experimental and numerical studies on production scheme to improve energy efficiency of bitumen production through insitu oil-in-water (O/W) emulsion," Energy, Elsevier, vol. 244(PA).
    2. Zhang, Qitao & Liu, Wenchao & Dahi Taleghani, Arash, 2022. "Numerical study on non-Newtonian Bingham fluid flow in development of heavy oil reservoirs using radiofrequency heating method," Energy, Elsevier, vol. 239(PE).
    3. Zhou, Xiang & Li, Xiuluan & Shen, Dehuang & Shi, Lanxiang & Zhang, Zhien & Sun, Xinge & Jiang, Qi, 2022. "CO2 huff-n-puff process to enhance heavy oil recovery and CO2 storage: An integration study," Energy, Elsevier, vol. 239(PB).
    4. Xu, Fuqiang & Song, Xianzhi & Song, Guofeng & Ji, Jiayan & Song, Zihao & Shi, Yu & Lv, Zehao, 2023. "Numerical studies on heat extraction evaluation and multi-objective optimization of abandoned oil well patterns in intermittent operation mode," Energy, Elsevier, vol. 269(C).
    5. Lyu, Chaohui & Zhong, Liguo & Wang, Qing & Zhang, Wei & Han, Xiaodong & Chen, Mingqiang & Zhu, Yu & Yang, Jiawang, 2023. "Core scale analysis of low viscosity oil injection in enhancing oil recovery of heavy oil reservoirs," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    2. Wang, Yi & Zhang, Liang & Cui, Guodong & Kang, Jun & Ren, Shaoran, 2019. "Geothermal development and power generation by circulating water and isobutane via a closed-loop horizontal well from hot dry rocks," Renewable Energy, Elsevier, vol. 136(C), pages 909-922.
    3. Tang, Hewei & Xu, Boyue & Hasan, A. Rashid & Sun, Zhuang & Killough, John, 2019. "Modeling wellbore heat exchangers: Fully numerical to fully analytical solutions," Renewable Energy, Elsevier, vol. 133(C), pages 1124-1135.
    4. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    5. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    6. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    7. Xie, Kun & Nian, Yong-Le & Cheng, Wen-Long, 2018. "Analysis and optimization of underground thermal energy storage using depleted oil wells," Energy, Elsevier, vol. 163(C), pages 1006-1016.
    8. Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
    9. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).
    10. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2021. "Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation," Renewable Energy, Elsevier, vol. 176(C), pages 115-134.
    11. Alimonti, C. & Soldo, E. & Bocchetti, D. & Berardi, D., 2018. "The wellbore heat exchangers: A technical review," Renewable Energy, Elsevier, vol. 123(C), pages 353-381.
    12. Cheng, Sharon W.Y. & Kurnia, Jundika C. & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2019. "Optimization of geothermal energy extraction from abandoned oil well with a novel well bottom curvature design utilizing Taguchi method," Energy, Elsevier, vol. 188(C).
    13. Li, Chao & Jiang, Chao & Guan, Yanling & Chen, Hao & Yang, Ruitao & Wan, Rong & Shen, Lu, 2023. "Comparison of the experimental and numerical results of coaxial-type and U-type deep-buried pipes’ heat transfer performances," Renewable Energy, Elsevier, vol. 210(C), pages 95-106.
    14. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.
    15. Jia, G.S. & Ma, Z.D. & Xia, Z.H. & Zhang, Y.P. & Xue, Y.Z. & Chai, J.C. & Jin, L.W., 2022. "A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions," Renewable Energy, Elsevier, vol. 182(C), pages 296-313.
    16. Gharibi, Shabnam & Mortezazadeh, Emad & Hashemi Aghcheh Bodi, Seyed Jalaledin & Vatani, Ali, 2018. "Feasibility study of geothermal heat extraction from abandoned oil wells using a U-tube heat exchanger," Energy, Elsevier, vol. 153(C), pages 554-567.
    17. Yuhao Zhu & Kewen Li & Changwei Liu & Mahlalela Bhekumuzi Mgijimi, 2019. "Geothermal Power Production from Abandoned Oil Reservoirs Using In Situ Combustion Technology," Energies, MDPI, vol. 12(23), pages 1-21, November.
    18. Zhang, Liang & Yang, Linchao & Geng, Songhe & Wen, Ronghua & He, Chuan & Liang, Yuzhu & Yang, Hongbin, 2022. "Numerical simulation on the heat extraction from the porous medium-low temperature geothermal reservoirs by self-circulation wellbore and its enhanced methods," Renewable Energy, Elsevier, vol. 194(C), pages 1009-1025.
    19. Moussa, Tamer & Dehghanpour, Hassan, 2022. "Evaluating geothermal energy production from suspended oil and gas wells by using data mining," Renewable Energy, Elsevier, vol. 196(C), pages 1294-1307.
    20. Mokhtari, Hamid & Hadiannasab, Hasti & Mostafavi, Mostafa & Ahmadibeni, Ali & Shahriari, Behrooz, 2016. "Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger," Energy, Elsevier, vol. 102(C), pages 260-275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:853-867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.