IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp537-545.html
   My bibliography  Save this article

Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs

Author

Listed:
  • Cheng, Wen-Long
  • Liu, Jian
  • Nian, Yong-Le
  • Wang, Chang-Long

Abstract

Using abandoned oil wells for geothermal power generation can relieve energy problem, save drilling cost, and govern the pollution caused by the residual oil of the abandoned oil wells. In this paper, a novel method for enhancing the geothermal utilization efficiency by developing thermal reservoirs is presented. A 2-D thermal reservoirs coupling with 1-D wellbore heat transfer model was set up to simulate geothermal energy production, and the effects of the thermal reservoirs on the geothermal production and electric power output were analyzed. The study results showed that the geothermal well with thermal reservoirs could produce about 4 times the heat and electric power output as that without thermal reservoirs. Moreover, the thermal reservoirs parameters would impact the heat production and power generation significantly. Especially, the heat production and electric power output increased with the thermal reservoirs depth and the fluid injection rate, however increased with the thermal reservoirs length firstly, and then decreased, which indicated that there was a maximal heat production and power generation at an optimal reservoir length. Simultaneously, the fluid loss in the thermal reservoirs increased with the thermal reservoirs depth and length as well as thermal reservoirs porosity.

Suggested Citation

  • Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:537-545
    DOI: 10.1016/j.energy.2016.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216305618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kujawa, Tomasz & Nowak, Władysław & Stachel, Aleksander A., 2006. "Utilization of existing deep geological wells for acquisitions of geothermal energy," Energy, Elsevier, vol. 31(5), pages 650-664.
    2. Bu, Xianbiao & Ma, Weibin & Li, Huashan, 2012. "Geothermal energy production utilizing abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 41(C), pages 80-85.
    3. Xu, Chaoshui & Dowd, Peter Alan & Tian, Zhao Feng, 2015. "A simplified coupled hydro-thermal model for enhanced geothermal systems," Applied Energy, Elsevier, vol. 140(C), pages 135-145.
    4. Roy, J.P. & Mishra, M.K. & Misra, Ashok, 2011. "Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions," Applied Energy, Elsevier, vol. 88(9), pages 2995-3004.
    5. Cheng, Wen-Long & Huang, Yong-Hua & Lu, De-Tang & Yin, Hong-Ru, 2011. "A novel analytical transient heat-conduction time function for heat transfer in steam injection wells considering the wellbore heat capacity," Energy, Elsevier, vol. 36(7), pages 4080-4088.
    6. Lior, Noam, 2008. "Energy resources and use: The present situation and possible paths to the future," Energy, Elsevier, vol. 33(6), pages 842-857.
    7. Quoilin, Sylvain & Aumann, Richard & Grill, Andreas & Schuster, Andreas & Lemort, Vincent & Spliethoff, Hartmut, 2011. "Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles," Applied Energy, Elsevier, vol. 88(6), pages 2183-2190, June.
    8. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Xie, Kun, 2014. "Evaluation of working fluids for geothermal power generation from abandoned oil wells," Applied Energy, Elsevier, vol. 118(C), pages 238-245.
    9. Sayigh, Ali, 1999. "Renewable energy -- the way forward," Applied Energy, Elsevier, vol. 64(1-4), pages 15-30, September.
    10. Davis, Adelina P. & Michaelides, Efstathios E., 2009. "Geothermal power production from abandoned oil wells," Energy, Elsevier, vol. 34(7), pages 866-872.
    11. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Wang, Chang-Long, 2013. "Studies on geothermal power generation using abandoned oil wells," Energy, Elsevier, vol. 59(C), pages 248-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujiang He & Xianbiao Bu, 2020. "Performance of Hybrid Single Well Enhanced Geothermal System and Solar Energy for Buildings Heating," Energies, MDPI, vol. 13(10), pages 1-10, May.
    2. Gharibi, Shabnam & Mortezazadeh, Emad & Hashemi Aghcheh Bodi, Seyed Jalaledin & Vatani, Ali, 2018. "Feasibility study of geothermal heat extraction from abandoned oil wells using a U-tube heat exchanger," Energy, Elsevier, vol. 153(C), pages 554-567.
    3. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    4. Liang Zhang & Songhe Geng & Jun Kang & Jiahao Chao & Linchao Yang & Fangping Yan, 2020. "Experimental Study on the Heat Exchange Mechanism in a Simulated Self-Circulation Wellbore," Energies, MDPI, vol. 13(11), pages 1-22, June.
    5. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.
    6. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    7. Yuhao Zhu & Kewen Li & Changwei Liu & Mahlalela Bhekumuzi Mgijimi, 2019. "Geothermal Power Production from Abandoned Oil Reservoirs Using In Situ Combustion Technology," Energies, MDPI, vol. 12(23), pages 1-21, November.
    8. Gao, Xuefeng & Zhang, Yanjun & Cheng, Yuxiang & Huang, Yibin & Deng, Hao & Ma, Yongjie, 2022. "A novel strategy utilizing local fracture networks to enhance CBHE heat extraction performance: A case study of the Songyuan geothermal field in China," Energy, Elsevier, vol. 255(C).
    9. Liu, Jian & Cheng, Wen-Long & Nian, Yong-Le, 2018. "The stratigraphic and operating parameters influence on economic analysis for enhanced geothermal double wells utilization system," Energy, Elsevier, vol. 159(C), pages 264-276.
    10. Anna Chmielowska & Anna Sowiżdżał & Barbara Tomaszewska, 2021. "Prospects of Using Hydrocarbon Deposits from the Autochthonous Miocene Formation (Eastern Carpathian Foredeep, Poland) for Geothermal Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
    11. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    12. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    13. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Sensitivity analysis of deep geothermal reservoir: Effect of reservoir parameters on production temperature," Energy, Elsevier, vol. 129(C), pages 101-113.
    14. Xu, Fuqiang & Song, Xianzhi & Song, Guofeng & Ji, Jiayan & Song, Zihao & Shi, Yu & Lv, Zehao, 2023. "Numerical studies on heat extraction evaluation and multi-objective optimization of abandoned oil well patterns in intermittent operation mode," Energy, Elsevier, vol. 269(C).
    15. Duggal, R. & Rayudu, R. & Hinkley, J. & Burnell, J. & Wieland, C. & Keim, M., 2022. "A comprehensive review of energy extraction from low-temperature geothermal resources in hydrocarbon fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    17. Aliyu, Musa D. & Chen, Hua-Peng, 2018. "Enhanced geothermal system modelling with multiple pore media: Thermo-hydraulic coupled processes," Energy, Elsevier, vol. 165(PA), pages 931-948.
    18. Yang, Yi & Huo, Yaowu & Xia, Wenkai & Wang, Xurong & Zhao, Pan & Dai, Yiping, 2017. "Construction and preliminary test of a geothermal ORC system using geothermal resource from abandoned oil wells in the Huabei oilfield of China," Energy, Elsevier, vol. 140(P1), pages 633-645.
    19. Chen, Y. & Trifkovic, M., 2018. "Optimal scheduling of a microgrid in a volatile electricity market environment: Portfolio optimization approach," Applied Energy, Elsevier, vol. 226(C), pages 703-712.
    20. Moussa, Tamer & Dehghanpour, Hassan, 2022. "Evaluating geothermal energy production from suspended oil and gas wells by using data mining," Renewable Energy, Elsevier, vol. 196(C), pages 1294-1307.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Xie, Kun, 2014. "Evaluation of working fluids for geothermal power generation from abandoned oil wells," Applied Energy, Elsevier, vol. 118(C), pages 238-245.
    2. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    3. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.
    4. Tang, Hewei & Xu, Boyue & Hasan, A. Rashid & Sun, Zhuang & Killough, John, 2019. "Modeling wellbore heat exchangers: Fully numerical to fully analytical solutions," Renewable Energy, Elsevier, vol. 133(C), pages 1124-1135.
    5. Xie, Kun & Nian, Yong-Le & Cheng, Wen-Long, 2018. "Analysis and optimization of underground thermal energy storage using depleted oil wells," Energy, Elsevier, vol. 163(C), pages 1006-1016.
    6. Alimonti, C. & Soldo, E. & Bocchetti, D. & Berardi, D., 2018. "The wellbore heat exchangers: A technical review," Renewable Energy, Elsevier, vol. 123(C), pages 353-381.
    7. Cheng, Sharon W.Y. & Kurnia, Jundika C. & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2019. "Optimization of geothermal energy extraction from abandoned oil well with a novel well bottom curvature design utilizing Taguchi method," Energy, Elsevier, vol. 188(C).
    8. Jia, G.S. & Ma, Z.D. & Xia, Z.H. & Zhang, Y.P. & Xue, Y.Z. & Chai, J.C. & Jin, L.W., 2022. "A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions," Renewable Energy, Elsevier, vol. 182(C), pages 296-313.
    9. Mokhtari, Hamid & Hadiannasab, Hasti & Mostafavi, Mostafa & Ahmadibeni, Ali & Shahriari, Behrooz, 2016. "Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger," Energy, Elsevier, vol. 102(C), pages 260-275.
    10. Kędzierski, Piotr & Nagórski, Zdzisław & Niezgoda, Tadeusz, 2016. "Determination of local values of heat transfer coefficient in geothermal models with internal functions method," Renewable Energy, Elsevier, vol. 92(C), pages 506-516.
    11. Alimonti, C. & Soldo, E., 2016. "Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger," Renewable Energy, Elsevier, vol. 86(C), pages 292-301.
    12. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    13. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    14. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).
    15. Cui, Guodong & Ren, Shaoran & Zhang, Liang & Ezekiel, Justin & Enechukwu, Chioma & Wang, Yi & Zhang, Rui, 2017. "Geothermal exploitation from hot dry rocks via recycling heat transmission fluid in a horizontal well," Energy, Elsevier, vol. 128(C), pages 366-377.
    16. Gharibi, Shabnam & Mortezazadeh, Emad & Hashemi Aghcheh Bodi, Seyed Jalaledin & Vatani, Ali, 2018. "Feasibility study of geothermal heat extraction from abandoned oil wells using a U-tube heat exchanger," Energy, Elsevier, vol. 153(C), pages 554-567.
    17. Yuhao Zhu & Kewen Li & Changwei Liu & Mahlalela Bhekumuzi Mgijimi, 2019. "Geothermal Power Production from Abandoned Oil Reservoirs Using In Situ Combustion Technology," Energies, MDPI, vol. 12(23), pages 1-21, November.
    18. Jello, Josiane & Baser, Tugce, 2023. "Utilization of existing hydrocarbon wells for geothermal system development: A review," Applied Energy, Elsevier, vol. 348(C).
    19. Zolfagharroshan, Mohammad & Xu, Minghan & Boutot, Jade & Zueter, Ahmad F. & Tareen, Muhammad S.K. & Kang, Mary & Sasmito, Agus P., 2024. "Assessment of geothermal energy potential from abandoned oil and gas wells in Alberta, Canada," Applied Energy, Elsevier, vol. 375(C).
    20. Anna Chmielowska & Anna Sowiżdżał & Barbara Tomaszewska, 2021. "Prospects of Using Hydrocarbon Deposits from the Autochthonous Miocene Formation (Eastern Carpathian Foredeep, Poland) for Geothermal Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:537-545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.