IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp292-301.html
   My bibliography  Save this article

Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger

Author

Listed:
  • Alimonti, C.
  • Soldo, E.

Abstract

The present study analyses the possibility to implement a WellBore Heat eXchanger (WBHX) on one of the largest European oil fields: the Villafortuna Trecate oilfield. The research is focused on the optimization of the WBHX to maximize the extracted heat. Hence, a numerical model of a WBHX has been setup. The simulations have considered the use of two different heat transfer fluids: water and diathermic oil. It was also tried different internal diameters of the pipes in order to optimize the geometrical configuration for the specific case study.

Suggested Citation

  • Alimonti, C. & Soldo, E., 2016. "Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger," Renewable Energy, Elsevier, vol. 86(C), pages 292-301.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:292-301
    DOI: 10.1016/j.renene.2015.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kujawa, Tomasz & Nowak, Władysław & Stachel, Aleksander A., 2006. "Utilization of existing deep geological wells for acquisitions of geothermal energy," Energy, Elsevier, vol. 31(5), pages 650-664.
    2. Madhawa Hettiarachchi, H.D. & Golubovic, Mihajlo & Worek, William M. & Ikegami, Yasuyuki, 2007. "Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources," Energy, Elsevier, vol. 32(9), pages 1698-1706.
    3. Davis, Adelina P. & Michaelides, Efstathios E., 2009. "Geothermal power production from abandoned oil wells," Energy, Elsevier, vol. 34(7), pages 866-872.
    4. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Wang, Chang-Long, 2013. "Studies on geothermal power generation using abandoned oil wells," Energy, Elsevier, vol. 59(C), pages 248-254.
    5. Templeton, J.D. & Ghoreishi-Madiseh, S.A. & Hassani, F. & Al-Khawaja, M.J., 2014. "Abandoned petroleum wells as sustainable sources of geothermal energy," Energy, Elsevier, vol. 70(C), pages 366-373.
    6. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    7. Bu, Xianbiao & Ma, Weibin & Li, Huashan, 2012. "Geothermal energy production utilizing abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 41(C), pages 80-85.
    8. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Xie, Kun, 2014. "Evaluation of working fluids for geothermal power generation from abandoned oil wells," Applied Energy, Elsevier, vol. 118(C), pages 238-245.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    2. Alimonti, C. & Soldo, E. & Bocchetti, D. & Berardi, D., 2018. "The wellbore heat exchangers: A technical review," Renewable Energy, Elsevier, vol. 123(C), pages 353-381.
    3. Cheng, Sharon W.Y. & Kurnia, Jundika C. & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2019. "Optimization of geothermal energy extraction from abandoned oil well with a novel well bottom curvature design utilizing Taguchi method," Energy, Elsevier, vol. 188(C).
    4. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.
    5. Kędzierski, Piotr & Nagórski, Zdzisław & Niezgoda, Tadeusz, 2016. "Determination of local values of heat transfer coefficient in geothermal models with internal functions method," Renewable Energy, Elsevier, vol. 92(C), pages 506-516.
    6. Tang, Hewei & Xu, Boyue & Hasan, A. Rashid & Sun, Zhuang & Killough, John, 2019. "Modeling wellbore heat exchangers: Fully numerical to fully analytical solutions," Renewable Energy, Elsevier, vol. 133(C), pages 1124-1135.
    7. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    8. Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
    9. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).
    10. Jia, G.S. & Ma, Z.D. & Xia, Z.H. & Zhang, Y.P. & Xue, Y.Z. & Chai, J.C. & Jin, L.W., 2022. "A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions," Renewable Energy, Elsevier, vol. 182(C), pages 296-313.
    11. Mokhtari, Hamid & Hadiannasab, Hasti & Mostafavi, Mostafa & Ahmadibeni, Ali & Shahriari, Behrooz, 2016. "Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger," Energy, Elsevier, vol. 102(C), pages 260-275.
    12. Anna Chmielowska & Anna Sowiżdżał & Barbara Tomaszewska, 2021. "Prospects of Using Hydrocarbon Deposits from the Autochthonous Miocene Formation (Eastern Carpathian Foredeep, Poland) for Geothermal Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
    13. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    14. Xie, Kun & Nian, Yong-Le & Cheng, Wen-Long, 2018. "Analysis and optimization of underground thermal energy storage using depleted oil wells," Energy, Elsevier, vol. 163(C), pages 1006-1016.
    15. Yuhao Zhu & Kewen Li & Changwei Liu & Mahlalela Bhekumuzi Mgijimi, 2019. "Geothermal Power Production from Abandoned Oil Reservoirs Using In Situ Combustion Technology," Energies, MDPI, vol. 12(23), pages 1-21, November.
    16. Jello, Josiane & Baser, Tugce, 2023. "Utilization of existing hydrocarbon wells for geothermal system development: A review," Applied Energy, Elsevier, vol. 348(C).
    17. Gharibi, Shabnam & Mortezazadeh, Emad & Hashemi Aghcheh Bodi, Seyed Jalaledin & Vatani, Ali, 2018. "Feasibility study of geothermal heat extraction from abandoned oil wells using a U-tube heat exchanger," Energy, Elsevier, vol. 153(C), pages 554-567.
    18. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Huang, Guangping & Liu, Wei Victor, 2021. "Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 165(P1), pages 334-349.
    19. Kurnia, Jundika C. & Putra, Zulfan A. & Muraza, Oki & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2021. "Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia," Renewable Energy, Elsevier, vol. 175(C), pages 868-879.
    20. Li, Chao & Jiang, Chao & Guan, Yanling & Chen, Hao & Yang, Ruitao & Wan, Rong & Shen, Lu, 2023. "Comparison of the experimental and numerical results of coaxial-type and U-type deep-buried pipes’ heat transfer performances," Renewable Energy, Elsevier, vol. 210(C), pages 95-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:292-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.