IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224036557.html
   My bibliography  Save this article

Multiscale evaluation of virtual fractures induced by direct current electric fields in multiple scenarios

Author

Listed:
  • Wang, Zhipeng
  • Ning, Zhengfu
  • Guo, Wenting
  • Chen, Zhangxin

Abstract

Faced with dwindling fossil fuel reserves, enhancing energy recovery and transitioning to renewables is essential. In tight reservoirs, electrochemical effects of micro and nanopores obstruct fluid movement, the miscibility pressures of CO2 and oil, and the fluid heat extraction efficiency. This study introduces a method utilizing direct current (DC) electric fields to enhance energy development, showcasing its potential from microscale experiments to macroscale applications. Based on microfluidic and electro-driven displacement experiments, the concept of virtual fractures is proposed and a corresponding model is developed. Numerical simulations further clarify the impact of virtual fractures on CO2 recovery, storage, and thermal extraction, proposing a workflow for effective implementation. Using the Non-Sorting Genetic Algorithm II (NSGA-II) for optimization. Results of the systematic performance analysis show that an electric field strength of 0.5V/m optimally enhances CO2 recovery rates, comparable to miscible extractions. The technology fosters secondary and primary virtual fractures, enhancing the efficiency of energy extraction systems. Economic analyses confirm the feasibility of this DC-assisted strategy. Compared to conventional schemes, the optimized schemes offer greater economic benefits, amounting to 4.982 and 3.052 million US dollars, respectively. In summary, multiscale experiments, numerical simulations, and economic analyses underscore the advantages of DC electric field-assisted energy extraction.

Suggested Citation

  • Wang, Zhipeng & Ning, Zhengfu & Guo, Wenting & Chen, Zhangxin, 2024. "Multiscale evaluation of virtual fractures induced by direct current electric fields in multiple scenarios," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036557
    DOI: 10.1016/j.energy.2024.133877
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224036557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133877?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Xiang & Luo, Tingting & Wang, Lei & Wang, Haijun & Song, Yongchen & Li, Yanghui, 2019. "Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization," Applied Energy, Elsevier, vol. 250(C), pages 7-18.
    2. Zhang, Xue & Li, Lei & Su, Yuliang & Da, Qi'an & Fu, Jingang & Wang, Rujun & Chen, Fangfang, 2023. "Microfluidic investigation on asphaltene interfaces attempts to carbon sequestration and leakage: Oil-CO2 phase interaction characteristics at ultrahigh temperature and pressure," Applied Energy, Elsevier, vol. 348(C).
    3. Sun, Zhonghua & Li, Minghui & Yuan, Shuai & Hou, Xiaoyu & Bai, Hao & Zhou, Fujian & Liu, Xiongfei & Yang, Mingmin, 2024. "The flooding mechanism and oil recovery of nanoemulsion on the fractured/non-fractured tight sandstone based on online LF-NMR experiments," Energy, Elsevier, vol. 291(C).
    4. Shuba, Eyasu Shumbulo & Kifle, Demeke, 2018. "Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 743-755.
    5. Xu, Fuqiang & Song, Xianzhi & Song, Guofeng & Ji, Jiayan & Song, Zihao & Shi, Yu & Lv, Zehao, 2023. "Numerical studies on heat extraction evaluation and multi-objective optimization of abandoned oil well patterns in intermittent operation mode," Energy, Elsevier, vol. 269(C).
    6. Wang, Zhipeng & Ning, Zhengfu & Guo, Wenting & Zhan, Jie & Zhang, Yuanxin, 2024. "Study of fracture monitoring and heat extraction evaluation in geothermal reservoir modified by abandoned well pattern: Numerical models and case studies," Energy, Elsevier, vol. 296(C).
    7. Shi, Tong & Feng, Hao & Liu, Dong & Zhang, Ying & Li, Qiang, 2022. "High-performance microfluidic electrochemical reactor for efficient hydrogen evolution," Applied Energy, Elsevier, vol. 325(C).
    8. Zhou, Xiaofeng & Wei, Jianguang & Zhao, Junfeng & Zhang, Xiangyu & Fu, Xiaofei & Shamil, Sultanov & Abdumalik, Gayubov & Chen, Yinghe & Wang, Jian, 2024. "Study on pore structure and permeability sensitivity of tight oil reservoirs," Energy, Elsevier, vol. 288(C).
    9. Wang, Yang & Voskov, Denis & Khait, Mark & Bruhn, David, 2020. "An efficient numerical simulator for geothermal simulation: A benchmark study," Applied Energy, Elsevier, vol. 264(C).
    10. Ajoma, Emmanuel & Saira, & Sungkachart, Thanarat & Le-Hussain, Furqan, 2021. "Effect of miscibility and injection rate on water-saturated CO2 Injection," Energy, Elsevier, vol. 217(C).
    11. Dong, Tianshu & Duan, Xiudong & Huang, Yuanyuan & Huang, Danji & Luo, Yingdong & Liu, Ziyu & Ai, Xiaomeng & Fang, Jiakun & Song, Chaolong, 2024. "Enhancement of hydrogen production via optimizing micro-structures of electrolyzer on a microfluidic platform," Applied Energy, Elsevier, vol. 356(C).
    12. Liu, Yongge & Liu, Xiaoyu & Hou, Jian & Li, Huazhou Andy & Liu, Yueliang & Chen, Zhangxin, 2019. "Technical and economic feasibility of a novel heavy oil recovery method: Geothermal energy assisted heavy oil recovery," Energy, Elsevier, vol. 181(C), pages 853-867.
    13. Li, Jiangtao & Zhou, Xiaofeng & Gayubov, Abdumalik & Shamil, Sultanov, 2023. "Study on production performance characteristics of horizontal wells in low permeability and tight oil reservoirs," Energy, Elsevier, vol. 284(C).
    14. Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).
    15. Xiaolong, Chen & Yiqiang, Li & Xiang, Tang & Huan, Qi & Xuebing, Sun & Jianghao, Luo, 2021. "Effect of gravity segregation on CO2 flooding under various pressure conditions: Application to CO2 sequestration and oil production," Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhipeng & Ning, Zhengfu & Guo, Wenting & Zhan, Jie & Chen, Zhangxin, 2024. "DC electric field assisted heat extraction evaluation via water circulation in abandoned production well patterns: Semi-analytical and numerical models," Renewable Energy, Elsevier, vol. 228(C).
    2. Tan, Lin & Liu, Fang & Dai, Sheng & Yao, Junlan, 2024. "A bibliometric analysis of two-decade research efforts in turning natural gas hydrates into energy," Energy, Elsevier, vol. 299(C).
    3. Dong, Lin & Li, Yanlong & Wu, Nengyou & Wan, Yizhao & Liao, Hualin & Wang, Huajian & Zhang, Yajuan & Ji, Yunkai & Hu, Gaowei & Leonenko, Yuri, 2023. "Numerical simulation of gas extraction performance from hydrate reservoirs using double-well systems," Energy, Elsevier, vol. 265(C).
    4. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    5. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    6. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    7. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    8. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    9. Xu, Xiwei & Jiang, Enchen & Li, Zhiyu & Zhu, Xiongfa & Sun, Yan & Tu, Ren, 2019. "Alkene and benzene derivate obtained from catalytic reforming of acetone-butanol-ethanol (ABE) from carbohydrates fermentation broth," Renewable Energy, Elsevier, vol. 135(C), pages 1213-1223.
    10. Wang, Haijun & Liu, Weiguo & Wu, Peng & Pan, Xuelian & You, Zeshao & Lu, Jingsheng & Li, Yanghui, 2023. "Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect," Energy, Elsevier, vol. 275(C).
    11. Qin, Xuwen & Liang, Qianyong & Ye, Jianliang & Yang, Lin & Qiu, Haijun & Xie, Wenwei & Liang, Jinqiang & Lu, Jin'an & Lu, Cheng & Lu, Hailong & Ma, Baojin & Kuang, Zenggui & Wei, Jiangong & Lu, Hongfe, 2020. "The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea," Applied Energy, Elsevier, vol. 278(C).
    12. Jin, Guangrong & Peng, Yingyu & Liu, Lihua & Su, Zheng & Liu, Jie & Li, Tingting & Wu, Daidai, 2022. "Enhancement of gas production from low-permeability hydrate by radially branched horizontal well: Shenhu Area, South China Sea," Energy, Elsevier, vol. 253(C).
    13. Mao, Peixiao & Wu, Nengyou & Wan, Yizhao & Hu, Gaowei & Wang, Xingxing, 2023. "Optimization of a multi-fractured multilateral well network in advantageous structural positions of ultralow-permeability hydrate reservoirs," Energy, Elsevier, vol. 268(C).
    14. Fang Jin & Feng Huang & Guobiao Zhang & Bing Li & Jianguo Lv, 2023. "Experimental Investigation on Deformation and Permeability of Clayey–Silty Sediment during Hydrate Dissociation by Depressurization," Energies, MDPI, vol. 16(13), pages 1-15, June.
    15. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Małgorzata Hawrot-Paw & Adam Koniuszy & Małgorzata Gałczyńska, 2020. "Sustainable Production of Monoraphidium Microalgae Biomass as a Source of Bioenergy," Energies, MDPI, vol. 13(22), pages 1-13, November.
    17. Wu, Peng & Chen, Yukun & Shang, Anran & Ding, Jiping & Wei, Jiangong & Liu, Weiguo & Li, Yanghui, 2024. "Anisotropy analysis of two-phase flow permeability in the multi-stage shear process of hydrate-bearing sediments," Energy, Elsevier, vol. 293(C).
    18. Qin, Fanfan & Sun, Jiaxin & Cao, Xinxin & Mao, Peixiao & Zhang, Ling & Lei, Gang & Jiang, Guosheng & Ning, Fulong, 2025. "Numerical simulation on combined production of hydrate and free gas from silty clay reservoir in the South China Sea by depressurization: Formation sealing," Applied Energy, Elsevier, vol. 377(PA).
    19. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    20. Wei, Rupeng & Xia, Yongqiang & Wang, Zifei & Li, Qingping & Lv, Xin & Leng, Shudong & Zhang, Lunxiang & Zhang, Yi & Xiao, Bo & Yang, Shengxiong & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2022. "Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea," Applied Energy, Elsevier, vol. 320(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.