IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5975-d445807.html
   My bibliography  Save this article

Sustainable Production of Monoraphidium Microalgae Biomass as a Source of Bioenergy

Author

Listed:
  • Małgorzata Hawrot-Paw

    (Department of Renewable Energy Engineering, West Pomeranian University of Technology in Szczecin, Pawla VI 1, 71-459 Szczecin, Poland)

  • Adam Koniuszy

    (Department of Renewable Energy Engineering, West Pomeranian University of Technology in Szczecin, Pawla VI 1, 71-459 Szczecin, Poland)

  • Małgorzata Gałczyńska

    (Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Slowackiego 17, 71-434 Szczecin, Poland)

Abstract

Microalgae are a renewable source of unconventional biomass with potential application in the production of various biofuels. The production of carbon-neutral fuels is necessary for protecting the environment. This work determined the possibility of producing biomass of microalgae belonging to Monoraphidium genus using saline wastewater resulting from proecological salmon farming in the recirculating aquaculture system. The tests were carried out in tubular photobioreactors using LED light. As a part of the analyses, the growth and productivity of microalgal biomass, cell density in culture, and lipid concentration and ash content in biomass were determined. In addition, the concentration of selected phosphorus and nitrogen forms present in wastewater corresponding to the degree of their use by microalgae as a nutrient substrate was determined. The biomass concentration estimated in the tests was 3.79 g·L −1 , while the maximum biomass productivity was 0.46 g·L −1 ·d −1 . The cells’ optical density in culture measured at 680 nm was 0.648. The lipid content in biomass was 18.53% (dry basis), and the ash content was 32.34%. It was found that microalgae of the genus Monoraphidium effectively used the nitrogen as well as phosphorus forms present in the wastewater for their growth. The total nitrogen content in the sewage decreased by 82.62%, and total phosphorus content by over 99%. The analysis of the individual forms of nitrogen showed that N-NO 3 was reduced by 85.37% and N-NO 2 by 78.43%, while orthophosphate (V) dissolved in water was reduced by 99%. However, the content of N-NH 4 in wastewater from the beginning till the end of the experiment remained <0.05 mg·L −1 .

Suggested Citation

  • Małgorzata Hawrot-Paw & Adam Koniuszy & Małgorzata Gałczyńska, 2020. "Sustainable Production of Monoraphidium Microalgae Biomass as a Source of Bioenergy," Energies, MDPI, vol. 13(22), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5975-:d:445807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    2. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    3. Shuba, Eyasu Shumbulo & Kifle, Demeke, 2018. "Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 743-755.
    4. Ankita Juneja & Ruben Michael Ceballos & Ganti S. Murthy, 2013. "Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review," Energies, MDPI, vol. 6(9), pages 1-32, September.
    5. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    6. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.
    7. Goldemberg, Jose & Teixeira Coelho, Suani, 2004. "Renewable energy--traditional biomass vs. modern biomass," Energy Policy, Elsevier, vol. 32(6), pages 711-714, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Dębowski & Izabela Świca & Joanna Kazimierowicz & Marcin Zieliński, 2022. "Large Scale Microalgae Biofuel Technology—Development Perspectives in Light of the Barriers and Limitations," Energies, MDPI, vol. 16(1), pages 1-23, December.
    2. Ana F. Esteves & Eva M. Salgado & José C. M. Pires, 2022. "Recent Advances in Microalgal Biorefineries," Energies, MDPI, vol. 15(16), pages 1-4, August.
    3. Alejandro Ortega & Konstantinos Gkoumas & Anastasios Tsakalidis & Ferenc Pekár, 2021. "Low-Emission Alternative Energy for Transport in the EU: State of Play of Research and Innovation," Energies, MDPI, vol. 14(22), pages 1-22, November.
    4. Khawaja Muhammad Imran Bashir & Hyeon-Jun Lee & Sana Mansoor & Alexander Jahn & Man-Gi Cho, 2021. "The Effect of Chromium on Photosynthesis and Lipid Accumulation in Two Chlorophyte Microalgae," Energies, MDPI, vol. 14(8), pages 1-11, April.
    5. Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammed & Thaher, Mahmoud Ibrahim & Hawari, Alaa H. & Alshamri, Noora & AlGhasal, Ghamza & Al-Jabri, Hareb M.J., 2023. "Biocrude oil production from a self-settling marine cyanobacterium, Chroococcidiopsis sp., using a biorefinery approach," Renewable Energy, Elsevier, vol. 203(C), pages 1-9.
    6. Patryk Ratomski & Małgorzata Hawrot-Paw & Adam Koniuszy, 2021. "Utilisation of CO 2 from Sodium Bicarbonate to Produce Chlorella vulgaris Biomass in Tubular Photobioreactors for Biofuel Purposes," Sustainability, MDPI, vol. 13(16), pages 1-10, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    2. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Ricardo N. Coimbra & Carla Escapa & Marta Otero, 2019. "Comparative Thermogravimetric Assessment on the Combustion of Coal, Microalgae Biomass and Their Blend," Energies, MDPI, vol. 12(15), pages 1-22, August.
    4. Abdullah, Bawadi & Syed Muhammad, Syed Anuar Faua’ad & Shokravi, Zahra & Ismail, Shahrul & Kassim, Khairul Anuar & Mahmood, Azmi Nik & Aziz, Md Maniruzzaman A., 2019. "Fourth generation biofuel: A review on risks and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 37-50.
    5. Sedlar, D. Karasalihović & Vulin, D. & Krajačić, G. & Jukić, L., 2019. "Offshore gas production infrastructure reutilisation for blue energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 159-174.
    6. Li, Fanghua & Srivatsa, Srikanth Chakravartula & Bhattacharya, Sankar, 2019. "A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 481-497.
    7. Rahul Prasad Singh & Priya Yadav & Indrajeet Kumar & Manoj Kumar Solanki & Rajib Roychowdhury & Ajay Kumar & Rajan Kumar Gupta, 2023. "Advancement of Abiotic Stresses for Microalgal Lipid Production and Its Bioprospecting into Sustainable Biofuels," Sustainability, MDPI, vol. 15(18), pages 1-36, September.
    8. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    9. Debnath, Chandrani & Bandyopadhyay, Tarun Kanti & Bhunia, Biswanath & Mishra, Umesh & Narayanasamy, Selvaraju & Muthuraj, Muthusivaramapandian, 2021. "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    11. Pang, Na & Gu, Xiangyu & Chen, Shulin & Kirchhoff, Helmut & Lei, Hanwu & Roje, Sanja, 2019. "Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 450-460.
    12. Felix, Charles & Ubando, Aristotle & Madrazo, Cynthia & Gue, Ivan Henderson & Sutanto, Sylviana & Tran-Nguyen, Phuong Lan & Go, Alchris Woo & Ju, Yi-Hsu & Culaba, Alvin & Chang, Jo-Shu & Chen, Wei-Hsi, 2019. "Non-catalytic in-situ (trans) esterification of lipids in wet microalgae Chlorella vulgaris under subcritical conditions for the synthesis of fatty acid methyl esters," Applied Energy, Elsevier, vol. 248(C), pages 526-537.
    13. Nazarpour, Mehrshad & Taghizadeh-Alisaraei, Ahmad & Asghari, Ali & Abbaszadeh-Mayvan, Ahmad & Tatari, Aliasghar, 2022. "Optimization of biohydrogen production from microalgae by response surface methodology (RSM)," Energy, Elsevier, vol. 253(C).
    14. Nautiyal, Piyushi & Subramanian, K.A. & Dastidar, M.G. & Kumar, Ashok, 2020. "Experimental assessment of performance, combustion and emissions of a compression ignition engine fuelled with Spirulina platensis biodiesel," Energy, Elsevier, vol. 193(C).
    15. Zhang, Bing & Li, Wei & Guo, Yuan & Zhang, Zhiqiang & Shi, Wenxin & Cui, Fuyi & Lens, Piet N.L. & Tay, Joo Hwa, 2020. "Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    16. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Minghao Chen & Yixuan Chen & Qingtao Zhang, 2021. "A Review of Energy Consumption in the Acquisition of Bio-Feedstock for Microalgae Biofuel Production," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    18. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    19. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    20. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5975-:d:445807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.