IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v278y2020ics0306261920311478.html
   My bibliography  Save this article

The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea

Author

Listed:
  • Qin, Xuwen
  • Liang, Qianyong
  • Ye, Jianliang
  • Yang, Lin
  • Qiu, Haijun
  • Xie, Wenwei
  • Liang, Jinqiang
  • Lu, Jin'an
  • Lu, Cheng
  • Lu, Hailong
  • Ma, Baojin
  • Kuang, Zenggui
  • Wei, Jiangong
  • Lu, Hongfeng
  • Kou, Beibei

Abstract

The first offshore natural gas hydrate production test of China in 2017 has proved the feasibility of hydrate exploitation from clayey-silt reservoirs, which possesses the highest reservoirs than other types of hydrate resources. However, owing to the absence of monitoring wells in this production test, the hydrate dissociation behavior cannot be analyzed through pressure and temperature changes of hydrate reservoirs. This paper focuses on the simulation study on the detailed response of the temperature and pore pressure of hydrate reservoirs of Well SHSC-4 during the gas production by depressurization. Meanwhile, it highlights the analysis of favorable areas for the formation of secondary hydrates and the influence of the secondary hydrates on pressure and temperature field of hydrate reservoirs. The simulation results indicate that in the first 60 days, the hydrate reservoirs feature a dissociation radius of about 5 m, and the gas production from hydrate dissociation accounts for about 85%. After 1 year, 2 years and 5 years of hydrate exploitation, the influence radius of low-pressure area (<10 MPa) is 15 m, 16 m and 17 m, respectively, suggesting that the hydrate reservoirs have higher gas production efficiency in the first year. Furthermore, the temperature and pressure of hydrate reservoirs are not favorable to the formation of secondary hydrates in the first 60 days. In long-term production, secondary hydrates are mainly formed at hydrate dissociation front. This can increase the pore pressure and further decrease the effective stress in the local areas of hydrate reservoirs, thus affecting mechanical stability of the local hydrate reservoirs.

Suggested Citation

  • Qin, Xuwen & Liang, Qianyong & Ye, Jianliang & Yang, Lin & Qiu, Haijun & Xie, Wenwei & Liang, Jinqiang & Lu, Jin'an & Lu, Cheng & Lu, Hailong & Ma, Baojin & Kuang, Zenggui & Wei, Jiangong & Lu, Hongfe, 2020. "The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea," Applied Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311478
    DOI: 10.1016/j.apenergy.2020.115649
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920311478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115649?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Xiang & Luo, Tingting & Wang, Lei & Wang, Haijun & Song, Yongchen & Li, Yanghui, 2019. "Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization," Applied Energy, Elsevier, vol. 250(C), pages 7-18.
    2. Wang, Bin & Dong, Hongsheng & Liu, Yanzhen & Lv, Xin & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits☆," Applied Energy, Elsevier, vol. 227(C), pages 710-718.
    3. Wang, Bin & Dong, Hongsheng & Fan, Zhen & Liu, Shuyang & Lv, Xin & Li, Qingping & Zhao, Jiafei, 2020. "Numerical analysis of microwave stimulation for enhancing energy recovery from depressurized methane hydrate sediments," Applied Energy, Elsevier, vol. 262(C).
    4. Lin Yang & Chen Chen & Rui Jia & Youhong Sun & Wei Guo & Dongbin Pan & Xitong Li & Yong Chen, 2018. "Influence of Reservoir Stimulation on Marine Gas Hydrate Conversion Efficiency in Different Accumulation Conditions," Energies, MDPI, vol. 11(2), pages 1-16, February.
    5. Cheng Lu & Yuxuan Xia & Xiaoxiao Sun & Hang Bian & Haijun Qiu & Hongfeng Lu & Wanjing Luo & Jianchao Cai, 2019. "Permeability Evolution at Various Pressure Gradients in Natural Gas Hydrate Reservoir at the Shenhu Area in the South China Sea," Energies, MDPI, vol. 12(19), pages 1-13, September.
    6. Nair, Vishnu Chandrasekharan & Prasad, Siddhant Kumar & Kumar, Rajnish & Sangwai, Jitendra S., 2018. "Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combinations," Applied Energy, Elsevier, vol. 225(C), pages 755-768.
    7. Wang, Yi & Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2020. "Sediment deformation and strain evaluation during methane hydrate dissociation in a novel experimental apparatus," Applied Energy, Elsevier, vol. 262(C).
    8. Guo, Xianwei & Xu, Lei & Wang, Bin & Sun, Lingjie & Liu, Yulong & Wei, Rupeng & Yang, Lei & Zhao, Jiafei, 2020. "Optimized gas and water production from water-saturated hydrate-bearing sediment through step-wise depressurization combined with thermal stimulation," Applied Energy, Elsevier, vol. 276(C).
    9. Yang, Mingjun & Zhao, Jie & Zheng, Jia-nan & Song, Yongchen, 2019. "Hydrate reformation characteristics in natural gas hydrate dissociation process: A review," Applied Energy, Elsevier, vol. 256(C).
    10. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    11. Kou, Xuan & Wang, Yi & Li, Xiao-Sen & Zhang, Yu & Chen, Zhao-Yang, 2019. "Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Zhao, Jiafei & Liu, Yulong & Guo, Xianwei & Wei, Rupeng & Yu, Tianbo & Xu, Lei & Sun, Lingjie & Yang, Lei, 2020. "Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization," Applied Energy, Elsevier, vol. 260(C).
    13. Zhao, Jiafei & Zhu, Zihao & Song, Yongchen & Liu, Weiguo & Zhang, Yi & Wang, Dayong, 2015. "Analyzing the process of gas production for natural gas hydrate using depressurization," Applied Energy, Elsevier, vol. 142(C), pages 125-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boyun Guo & He Zhang, 2022. "Mathematical Modeling of the Dynamic Temperature Profile in Geothermal-Energy-Heated Natural Gas Hydrate Reservoirs," Sustainability, MDPI, vol. 14(5), pages 1-13, February.
    2. Dong, Lin & Li, Yanlong & Wu, Nengyou & Wan, Yizhao & Liao, Hualin & Wang, Huajian & Zhang, Yajuan & Ji, Yunkai & Hu, Gaowei & Leonenko, Yuri, 2023. "Numerical simulation of gas extraction performance from hydrate reservoirs using double-well systems," Energy, Elsevier, vol. 265(C).
    3. Yu, Tao & Guan, Guoqing & Wang, Dayong & Song, Yongchen & Abudula, Abuliti, 2021. "Numerical investigation on the long-term gas production behavior at the 2017 Shenhu methane hydrate production site," Applied Energy, Elsevier, vol. 285(C).
    4. Shen, Zhicong & Wang, Dong & Zheng, Tianyuan, 2023. "Numerical simulations of the synthetic processes and consequences of secondary hydrates during depressurization of a horizontal well in the hydrates production," Energy, Elsevier, vol. 263(PB).
    5. Guo, Yang & Li, Shuxia & Qin, Xuwen & Lu, Cheng & Wu, Didi & Liu, Lu & Zhang, Ningtao, 2023. "Enhanced gas production from low-permeability hydrate reservoirs based on embedded discrete fracture models: Influence of branch parameters," Energy, Elsevier, vol. 282(C).
    6. Bian, Hang & Qin, Xuwen & Sun, Jinsheng & Luo, Wanjing & Lu, Cheng & Zhu, Jian & Ma, Chao & Zhou, Yingfang, 2023. "The impact of mineral compositions on hydrate morphology evolution and phase transition hysteresis in natural clayey silts," Energy, Elsevier, vol. 274(C).
    7. Hongsheng Dong & Lunxiang Zhang & Jiaqi Wang, 2022. "Formation, Exploration, and Development of Natural Gas Hydrates," Energies, MDPI, vol. 15(16), pages 1-4, August.
    8. Liao, Youqiang & Zheng, Junjie & Wang, Zhiyuan & Sun, Baojiang & Sun, Xiaohui & Linga, Praveen, 2022. "Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media," Applied Energy, Elsevier, vol. 312(C).
    9. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    10. Mao, Peixiao & Wu, Nengyou & Wan, Yizhao & Hu, Gaowei & Wang, Xingxing, 2023. "Optimization of a multi-fractured multilateral well network in advantageous structural positions of ultralow-permeability hydrate reservoirs," Energy, Elsevier, vol. 268(C).
    11. Xu, Jianchun & Qin, Huating & Li, Hangyu & Lu, Cheng & Li, Shuxia & Wu, Didi, 2023. "Enhanced gas production efficiency of class 1,2,3 hydrate reservoirs using hydraulic fracturing technique," Energy, Elsevier, vol. 263(PE).
    12. Wei, Rupeng & Xia, Yongqiang & Wang, Zifei & Li, Qingping & Lv, Xin & Leng, Shudong & Zhang, Lunxiang & Zhang, Yi & Xiao, Bo & Yang, Shengxiong & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2022. "Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea," Applied Energy, Elsevier, vol. 320(C).
    13. Feng, Yu & Qu, Aoxing & Han, Yuze & Shi, Changrui & Liu, Yanzhen & Zhang, Lunxiang & Zhao, Jiafei & Yang, Lei & Song, Yongchen, 2023. "Effect of gas hydrate formation and dissociation on porous media structure with clay particles," Applied Energy, Elsevier, vol. 349(C).
    14. Yin, Faling & Gao, Yonghai & Chen, Ye & Sun, Baojiang & Li, Shaoqiang & Zhao, Danshi, 2022. "Numerical investigation on the long-term production behavior of horizontal well at the gas hydrate production site in South China Sea," Applied Energy, Elsevier, vol. 311(C).
    15. Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).
    16. Zhang, Zhaobin & Xu, Tao & Li, Shouding & Li, Xiao & Briceño Montilla, Maryelin Josefina & Lu, Cheng, 2023. "Comprehensive effects of heat and flow on the methane hydrate dissociation in porous media," Energy, Elsevier, vol. 265(C).
    17. Wei Sun & Guiwang Li & Huating Qin & Shuxia Li & Jianchun Xu, 2023. "Enhanced Gas Production from Class II Gas Hydrate Reservoirs by the Multistage Fractured Horizontal Well," Energies, MDPI, vol. 16(8), pages 1-24, April.
    18. Yin, Faling & Gao, Yonghai & Zhang, Heen & Sun, Baojiang & Chen, Ye & Gao, Dongzhi & Zhao, Xinxin, 2022. "Comprehensive evaluation of gas production efficiency and reservoir stability of horizontal well with different depressurization methods in low permeability hydrate reservoir," Energy, Elsevier, vol. 239(PE).
    19. Wang, Xiao-Hui & Chen, Yun & Li, Xing-Xun & Xu, Qiang & Kan, Jing-Yu & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "An exergy-based energy efficiency analysis on gas production from gas hydrates reservoir by brine stimulation combined depressurization method," Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Rupeng & Xia, Yongqiang & Wang, Zifei & Li, Qingping & Lv, Xin & Leng, Shudong & Zhang, Lunxiang & Zhang, Yi & Xiao, Bo & Yang, Shengxiong & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2022. "Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea," Applied Energy, Elsevier, vol. 320(C).
    2. Zhao, Jie & Zheng, Jia-nan & Ma, Shihui & Song, Yongchen & Yang, Mingjun, 2020. "Formation and production characteristics of methane hydrates from marine sediments in a core holder," Applied Energy, Elsevier, vol. 275(C).
    3. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Zhang, Yu & Chen, Zhao-Yang, 2020. "Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods," Applied Energy, Elsevier, vol. 277(C).
    4. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Visualization of interactions between depressurization-induced hydrate decomposition and heat/mass transfer," Energy, Elsevier, vol. 239(PC).
    5. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    6. Wang, Bin & Liu, Shuyang & Wang, Pengfei, 2022. "Microwave-assisted high-efficient gas production of depressurization-induced methane hydrate exploitation," Energy, Elsevier, vol. 247(C).
    7. Yang, Mingjun & Wang, Xinru & Pang, Weixin & Li, Kehan & Yu, Tao & Chen, Bingbing & Song, Yongchen, 2023. "The inhibit behavior of fluids migration on gas hydrate re-formation in depressurized-decomposed-reservoir," Energy, Elsevier, vol. 282(C).
    8. Dong, Shuang & Yang, Mingjun & Zhang, Lei & Zheng, Jia-nan & Song, Yongchen, 2023. "Methane hydrate exploitation characteristics and thermodynamic non-equilibrium mechanisms by long depressurization method," Energy, Elsevier, vol. 280(C).
    9. Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).
    10. Yin, Faling & Gao, Yonghai & Zhang, Heen & Sun, Baojiang & Chen, Ye & Gao, Dongzhi & Zhao, Xinxin, 2022. "Comprehensive evaluation of gas production efficiency and reservoir stability of horizontal well with different depressurization methods in low permeability hydrate reservoir," Energy, Elsevier, vol. 239(PE).
    11. Zhao, Ermeng & Hou, Jian & Liu, Yongge & Ji, Yunkai & Liu, Wenbin & Lu, Nu & Bai, Yajie, 2020. "Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea," Energy, Elsevier, vol. 213(C).
    12. Wan, Qing-Cui & Si, Hu & Li, Bo & Yin, Zhen-Yuan & Gao, Qiang & Liu, Shu & Han, Xiao & Chen, Ling-Ling, 2020. "Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization," Applied Energy, Elsevier, vol. 278(C).
    13. Guo, Xianwei & Xu, Lei & Wang, Bin & Sun, Lingjie & Liu, Yulong & Wei, Rupeng & Yang, Lei & Zhao, Jiafei, 2020. "Optimized gas and water production from water-saturated hydrate-bearing sediment through step-wise depressurization combined with thermal stimulation," Applied Energy, Elsevier, vol. 276(C).
    14. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    15. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    16. Fang Jin & Feng Huang & Guobiao Zhang & Bing Li & Jianguo Lv, 2023. "Experimental Investigation on Deformation and Permeability of Clayey–Silty Sediment during Hydrate Dissociation by Depressurization," Energies, MDPI, vol. 16(13), pages 1-15, June.
    17. Wang, Feifei & Shen, Kaixiang & Zhang, Zhilei & Zhang, Di & Wang, Zhenqing & Wang, Zizhen, 2023. "Numerical simulation of natural gas hydrate development with radial horizontal wells based on thermo-hydro-chemistry coupling," Energy, Elsevier, vol. 272(C).
    18. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    19. Wang, Bin & Dong, Hongsheng & Fan, Zhen & Liu, Shuyang & Lv, Xin & Li, Qingping & Zhao, Jiafei, 2020. "Numerical analysis of microwave stimulation for enhancing energy recovery from depressurized methane hydrate sediments," Applied Energy, Elsevier, vol. 262(C).
    20. Zhang, Zhaobin & Xu, Tao & Li, Shouding & Li, Xiao & Briceño Montilla, Maryelin Josefina & Lu, Cheng, 2023. "Comprehensive effects of heat and flow on the methane hydrate dissociation in porous media," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.