IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v278y2020ics0306261920311193.html
   My bibliography  Save this article

Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization

Author

Listed:
  • Wan, Qing-Cui
  • Si, Hu
  • Li, Bo
  • Yin, Zhen-Yuan
  • Gao, Qiang
  • Liu, Shu
  • Han, Xiao
  • Chen, Ling-Ling

Abstract

Natural gas hydrate is a potential and clean energy with abundant reserves in marine and permafrost areas. Efficient and safe extraction of the methane gas from gas hydrates has aroused worldwide attentions. In this work, the hydrate dissociation and gas production performances have been investigated in a high pressure reactor using two vertical wells by depressurization and its combinations with different injection modes, including warm water injection, room-temperature water flooding, and electric heating. The external heat supply rate is set identical in the cases with thermal stimulation. Results show that direct electrical heating combined with depressurization can dramatically increase the deposit temperature and eliminate the heat loss in the pipelines during fluid transportation, but a limited heat transfer radius exists in the vicinity of the heated wellbore due to the low thermal conductivity of the porous media. For the case with warm water injection, thermal convection becomes the key factor governing the heat transfer process, while the heat loss is inevitable during the transportation of the injected water in the pipelines. However, the heat can be more efficiently transferred to the hydrate-undissociated region through the water movement by enforced thermal convection than the electric heating. Comparatively, the novel tripartite strategy of electrical heating, room-temperature water flooding and depressurization shows the advantages of simultaneously reducing heat loss and enhancing heat transfer during hydrate exploitation, which results in the best energy recovery efficiency in this study. It suggests a good commercial exploitation value and shows important practical significance for future field studies.

Suggested Citation

  • Wan, Qing-Cui & Si, Hu & Li, Bo & Yin, Zhen-Yuan & Gao, Qiang & Liu, Shu & Han, Xiao & Chen, Ling-Ling, 2020. "Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization," Applied Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311193
    DOI: 10.1016/j.apenergy.2020.115612
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920311193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    2. Wang, Bin & Dong, Hongsheng & Liu, Yanzhen & Lv, Xin & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits☆," Applied Energy, Elsevier, vol. 227(C), pages 710-718.
    3. Wan, Qing-Cui & Si, Hu & Li, Gang & Feng, Jing-Chun & Li, Bo, 2020. "Heterogeneity properties of methane hydrate formation in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 261(C).
    4. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    5. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    6. Li, Gang & Li, Xiao-Sen & Yang, Bo & Duan, Li-Ping & Huang, Ning-Sheng & Zhang, Yu & Tang, Liang-Guang, 2013. "The use of dual horizontal wells in gas production from hydrate accumulations," Applied Energy, Elsevier, vol. 112(C), pages 1303-1310.
    7. Roberto Cesare Callarotti, 2011. "Energy Return on Energy Invested (EROI) for the Electrical Heating of Methane Hydrate Reservoirs," Sustainability, MDPI, vol. 3(11), pages 1-10, November.
    8. Nair, Vishnu Chandrasekharan & Prasad, Siddhant Kumar & Kumar, Rajnish & Sangwai, Jitendra S., 2018. "Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combinations," Applied Energy, Elsevier, vol. 225(C), pages 755-768.
    9. Li, Xiao-Sen & Yang, Bo & Zhang, Yu & Li, Gang & Duan, Li-Ping & Wang, Yi & Chen, Zhao-Yang & Huang, Ning-Sheng & Wu, Hui-Jie, 2012. "Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 93(C), pages 722-732.
    10. Li, Bo & Li, Xiao-Sen & Li, Gang & Feng, Jing-Chun & Wang, Yi, 2014. "Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 129(C), pages 274-286.
    11. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    12. Azizi, Mohammad Ali & Brouwer, Jacob & Dunn-Rankin, Derek, 2016. "Analytical investigation of high temperature 1kW solid oxide fuel cell system feasibility in methane hydrate recovery and deep ocean power generation," Applied Energy, Elsevier, vol. 179(C), pages 909-928.
    13. Guo, Xianwei & Xu, Lei & Wang, Bin & Sun, Lingjie & Liu, Yulong & Wei, Rupeng & Yang, Lei & Zhao, Jiafei, 2020. "Optimized gas and water production from water-saturated hydrate-bearing sediment through step-wise depressurization combined with thermal stimulation," Applied Energy, Elsevier, vol. 276(C).
    14. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    15. Yang, Mingjun & Fu, Zhe & Jiang, Lanlan & Song, Yongchen, 2017. "Gas recovery from depressurized methane hydrate deposits with different water saturations," Applied Energy, Elsevier, vol. 187(C), pages 180-188.
    16. Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Li, Bo & Chen, Zhao-Yang, 2013. "Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system," Applied Energy, Elsevier, vol. 110(C), pages 90-97.
    17. Li, Bo & Liu, Sheng-Dong & Liang, Yun-Pei & Liu, Hang, 2018. "The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media," Applied Energy, Elsevier, vol. 227(C), pages 694-702.
    18. Yin, Zhenyuan & Huang, Li & Linga, Praveen, 2019. "Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization," Applied Energy, Elsevier, vol. 254(C).
    19. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu, 2015. "Three dimensional experimental and numerical investigations into hydrate dissociation in sandy reservoir with dual horizontal wells," Energy, Elsevier, vol. 90(P1), pages 836-845.
    20. Li, Xiao-Sen & Li, Bo & Li, Gang & Yang, Bo, 2012. "Numerical simulation of gas production potential from permafrost hydrate deposits by huff and puff method in a single horizontal well in Qilian Mountain, Qinghai province," Energy, Elsevier, vol. 40(1), pages 59-75.
    21. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2015. "Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods," Energy, Elsevier, vol. 90(P2), pages 1931-1948.
    22. Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Li, Bo & Feng, Jing-Chun, 2013. "A three-dimensional study on methane hydrate decomposition with different methods using five-spot well," Applied Energy, Elsevier, vol. 112(C), pages 83-92.
    23. Zhao, Jiafei & Liu, Yulong & Guo, Xianwei & Wei, Rupeng & Yu, Tianbo & Xu, Lei & Sun, Lingjie & Yang, Lei, 2020. "Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jidong & Yin, Zhenyuan & Li, Qingping & Li, Shuaijun & Wang, Yi & Li, Xiao-Sen, 2023. "Comparison of fluid production between excess-gas and excess-water hydrate-bearing sediments under depressurization and its implication on energy recovery," Energy, Elsevier, vol. 282(C).
    2. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    3. Lin, Decai & Lu, Jingsheng & Liu, Jia & Liang, Deqing & Li, Dongliang & Jin, Guangrong & Xia, Zhiming & Li, Xiaosen, 2023. "Numerical study on natural gas hydrate production by hot water injection combined with depressurization," Energy, Elsevier, vol. 282(C).
    4. Chaturvedi, Krishna Raghav & Sinha, A.S.K. & Nair, Vishnu Chandrasekharan & Sharma, Tushar, 2021. "Enhanced carbon dioxide sequestration by direct injection of flue gas doped with hydrogen into hydrate reservoir: Possibility of natural gas production," Energy, Elsevier, vol. 227(C).
    5. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    6. Shi, Kangji & Wang, Zifei & Jia, Yuxin & Li, Qingping & Lv, Xin & Wang, Tian & Zhang, Lunxiang & Liu, Yu & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2022. "Effects of the vertical heterogeneity on the gas production behavior from hydrate reservoirs simulated by the fine sediments from the South China Sea," Energy, Elsevier, vol. 255(C).
    7. Zhang, Qi & Wang, Yanfei, 2023. "Comparisons of different electrical heating assisted depressurization methods for developing the unconfined hydrate deposits in Shenhu area," Energy, Elsevier, vol. 269(C).
    8. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).
    9. Salma Elhenawy & Majeda Khraisheh & Fares Almomani & Mohammad A. Al-Ghouti & Mohammad K. Hassan & Ala’a Al-Muhtaseb, 2022. "Towards Gas Hydrate-Free Pipelines: A Comprehensive Review of Gas Hydrate Inhibition Techniques," Energies, MDPI, vol. 15(22), pages 1-44, November.
    10. Wang, Xiao-Hui & Chen, Yun & Li, Xing-Xun & Xu, Qiang & Kan, Jing-Yu & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "An exergy-based energy efficiency analysis on gas production from gas hydrates reservoir by brine stimulation combined depressurization method," Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.
    2. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    3. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    4. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    5. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
    6. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    7. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    8. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    9. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2016. "Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization," Applied Energy, Elsevier, vol. 181(C), pages 299-309.
    10. Li, Bo & Liu, Sheng-Dong & Liang, Yun-Pei & Liu, Hang, 2018. "The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media," Applied Energy, Elsevier, vol. 227(C), pages 694-702.
    11. Kou, Xuan & Wang, Yi & Li, Xiao-Sen & Zhang, Yu & Chen, Zhao-Yang, 2019. "Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    13. Li, Bo & Zhang, Ting-Ting & Wan, Qing-Cui & Feng, Jing-Chun & Chen, Ling-Ling & Wei, Wen-Na, 2021. "Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments," Applied Energy, Elsevier, vol. 300(C).
    14. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    15. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    16. Yang, Mingjun & Zhao, Jie & Zheng, Jia-nan & Song, Yongchen, 2019. "Hydrate reformation characteristics in natural gas hydrate dissociation process: A review," Applied Energy, Elsevier, vol. 256(C).
    17. Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).
    18. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).
    19. Guo, Xianwei & Xu, Lei & Wang, Bin & Sun, Lingjie & Liu, Yulong & Wei, Rupeng & Yang, Lei & Zhao, Jiafei, 2020. "Optimized gas and water production from water-saturated hydrate-bearing sediment through step-wise depressurization combined with thermal stimulation," Applied Energy, Elsevier, vol. 276(C).
    20. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.