IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v112y2013icp1303-1310.html
   My bibliography  Save this article

The use of dual horizontal wells in gas production from hydrate accumulations

Author

Listed:
  • Li, Gang
  • Li, Xiao-Sen
  • Yang, Bo
  • Duan, Li-Ping
  • Huang, Ning-Sheng
  • Zhang, Yu
  • Tang, Liang-Guang

Abstract

The Pilot-Scale Hydrate Simulator (PHS, 117.8L pressure vessel) is used to study the methane hydrate dissociation with dual horizontal wells using both the steam assisted gravity drainage (SAGD) and the steam assisted anti-gravity drainage (SAAD) methods. This study is the first time to propose the evaluation and the comparisons of the methane hydrate dissociation using these two methods. Both SAGD and SAAD technique are suitable for recovering gas from the unconsolidated hydrate reservoirs with high permeability. The experimental results indicate that in SAGD, the steam chamber expands and the fluid (gas and water) production process can be divided into three stages: (1) the original water and gas in the vessel are driven towards the well, and only gas is produced, (2) the gas and the original water are produced simultaneously, and (3) the steam chamber expands to the production well, and the hot water is produced. The area with limited temperature increase during the steam injection process corresponds to the hydrate undissociated zone in the reservoir. The hydrate dissociation rate, the gas production rate and the energy efficiency ratio (EER) in both the cases of SAGD and SAAD decrease over time. Comparing with that in SAGD, gas is easier to be produced from the upper production well in SAAD, and the long-term EER in SAAD is also larger. In a word, as a gas-producing method, SAAD seems to be more suitable for recovering gas from the hydrate reservoir than SAGD.

Suggested Citation

  • Li, Gang & Li, Xiao-Sen & Yang, Bo & Duan, Li-Ping & Huang, Ning-Sheng & Zhang, Yu & Tang, Liang-Guang, 2013. "The use of dual horizontal wells in gas production from hydrate accumulations," Applied Energy, Elsevier, vol. 112(C), pages 1303-1310.
  • Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:1303-1310
    DOI: 10.1016/j.apenergy.2013.03.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913002535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.03.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Gang & Li, Xiao-Sen & Wang, Yi & Zhang, Yu, 2011. "Production behavior of methane hydrate in porous media using huff and puff method in a novel three-dimensional simulator," Energy, Elsevier, vol. 36(5), pages 3170-3178.
    2. Rossi, Federico & Filipponi, Mirko & Castellani, Beatrice, 2012. "Investigation on a novel reactor for gas hydrate production," Applied Energy, Elsevier, vol. 99(C), pages 167-172.
    3. Li, Xiao-Sen & Wang, Yi & Duan, Li-Ping & Li, Gang & Zhang, Yu & Huang, Ning-Sheng & Chen, Duo-Fu, 2012. "Experimental investigation into methane hydrate production during three-dimensional thermal huff and puff," Applied Energy, Elsevier, vol. 94(C), pages 48-57.
    4. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 2: The offshore and the onshore processes," Applied Energy, Elsevier, vol. 86(6), pages 793-804, June.
    5. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1," Applied Energy, Elsevier, vol. 86(6), pages 781-792, June.
    6. Li, Xiao-Sen & Yang, Bo & Zhang, Yu & Li, Gang & Duan, Li-Ping & Wang, Yi & Chen, Zhao-Yang & Huang, Ning-Sheng & Wu, Hui-Jie, 2012. "Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 93(C), pages 722-732.
    7. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    8. Aspelund, Audun & Tveit, Steinar P. & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 3: The combined carrier and onshore storage," Applied Energy, Elsevier, vol. 86(6), pages 805-814, June.
    9. Obara, Shin’ya & Yamada, Takanobu & Matsumura, Kazuhiro & Takahashi, Shiro & Kawai, Masahito & Rengarajan, Balaji, 2011. "Operational planning of an engine generator using a high pressure working fluid composed of CO2 hydrate," Applied Energy, Elsevier, vol. 88(12), pages 4733-4741.
    10. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 4: Sensitivity analysis of transport pressures and benchmarking with conv," Applied Energy, Elsevier, vol. 86(6), pages 815-825, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Gu, Yuhang & Li, Yanlong & Cao, Xinxin & Mao, Peixiao & Liu, Tianle & Qin, Shunbo & Jiang, Guosheng, 2023. "Gas recovery from silty hydrate reservoirs by using vertical and horizontal well patterns in the South China Sea: Effect of well spacing and its optimization," Energy, Elsevier, vol. 275(C).
    2. Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.
    3. Li, Gang & Li, Xiao-Sen & Li, Bo & Wang, Yi, 2014. "Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator," Energy, Elsevier, vol. 64(C), pages 298-306.
    4. Sun, Zhen-Feng & Li, Nan & Jia, Shuai & Cui, Jin-Long & Yuan, Qing & Sun, Chang-Yu & Chen, Guang-Jin, 2019. "A novel method to enhance methane hydrate exploitation efficiency via forming impermeable overlying CO2 hydrate cap," Applied Energy, Elsevier, vol. 240(C), pages 842-850.
    5. Li, Bo & Li, Xiao-Sen & Li, Gang & Feng, Jing-Chun & Wang, Yi, 2014. "Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 129(C), pages 274-286.
    6. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    7. Li, Gang & Wu, Dan-Mei & Li, Xiao-Sen & Lv, Qiu-Nan & Li, Chao & Zhang, Yu, 2017. "Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands," Applied Energy, Elsevier, vol. 202(C), pages 282-292.
    8. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    9. Li, Gang & Li, Xiao-Sen & Lv, Qiu-Nan & Xiao, Chang-Wen & Liu, Jian-Wu, 2023. "Full implicit simulator of hydrate (FISH) and analysis on hydrate dissociation in porous media in the cubic hydrate simulator," Energy, Elsevier, vol. 280(C).
    10. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    11. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Chen, Zhao-Yang, 2015. "Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 145(C), pages 69-79.
    12. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    13. Chong, Zheng Rong & Pujar, Girish Anand & Yang, Mingjun & Linga, Praveen, 2016. "Methane hydrate formation in excess water simulating marine locations and the impact of thermal stimulation on energy recovery," Applied Energy, Elsevier, vol. 177(C), pages 409-421.
    14. Wan, Qing-Cui & Si, Hu & Li, Bo & Yin, Zhen-Yuan & Gao, Qiang & Liu, Shu & Han, Xiao & Chen, Ling-Ling, 2020. "Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization," Applied Energy, Elsevier, vol. 278(C).
    15. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    16. Sergey Y. Misyura & Igor G. Donskoy, 2021. "Dissociation and Combustion of a Layer of Methane Hydrate Powder: Ways to Increase the Efficiency of Combustion and Degassing," Energies, MDPI, vol. 14(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Obara, Shin'ya & Kikuchi, Yoshinobu & Ishikawa, Kyosuke & Kawai, Masahito & Yoshiaki, Kashiwaya, 2015. "Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery," Energy, Elsevier, vol. 85(C), pages 280-295.
    2. Baccanelli, Margaret & Langé, Stefano & Rocco, Matteo V. & Pellegrini, Laura A. & Colombo, Emanuela, 2016. "Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis," Applied Energy, Elsevier, vol. 180(C), pages 546-559.
    3. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    4. Li, Xiao-Sen & Yang, Bo & Zhang, Yu & Li, Gang & Duan, Li-Ping & Wang, Yi & Chen, Zhao-Yang & Huang, Ning-Sheng & Wu, Hui-Jie, 2012. "Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 93(C), pages 722-732.
    5. Kim, Juwon & Seo, Youngkyun & Chang, Daejun, 2016. "Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction," Applied Energy, Elsevier, vol. 182(C), pages 154-163.
    6. Guo, Hao & Tang, Qixiong & Gong, Maoqiong & Cheng, Kuiwei, 2018. "Optimization of a novel liquefaction process based on Joule–Thomson cycle utilizing high-pressure natural gas exergy by genetic algorithm," Energy, Elsevier, vol. 151(C), pages 696-706.
    7. Khan, Mohd Shariq & Lee, Sanggyu & Rangaiah, G.P. & Lee, Moonyong, 2013. "Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes," Applied Energy, Elsevier, vol. 111(C), pages 1018-1031.
    8. Ancona, M.A. & Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Mormile, M. & Palella, M. & Scarponi, L.B., 2018. "Investigation on small-scale low pressure LNG production process," Applied Energy, Elsevier, vol. 227(C), pages 672-685.
    9. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
    10. Obara, Shin’ya & Yamada, Takanobu & Matsumura, Kazuhiro & Takahashi, Shiro & Kawai, Masahito & Rengarajan, Balaji, 2011. "Operational planning of an engine generator using a high pressure working fluid composed of CO2 hydrate," Applied Energy, Elsevier, vol. 88(12), pages 4733-4741.
    11. Pérez Sánchez, Jordán & Aguillón Martínez, Javier Eduardo & Mazur Czerwiec, Zdzislaw & Zavala Guzmán, Alan Martín, 2019. "Theoretical assessment of integration of CCS in the Mexican electrical sector," Energy, Elsevier, vol. 167(C), pages 828-840.
    12. Jiang, Xi & Akber Hassan, Wasim A. & Gluyas, Jon, 2013. "Modelling and monitoring of geological carbon storage: A perspective on cross-validation," Applied Energy, Elsevier, vol. 112(C), pages 784-792.
    13. Lee, Inkyu & Park, Jinwoo & You, Fengqi & Moon, Il, 2019. "A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis," Energy, Elsevier, vol. 173(C), pages 691-705.
    14. Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case," Energy, Elsevier, vol. 45(1), pages 375-385.
    15. Jiang, Xi, 2011. "A review of physical modelling and numerical simulation of long-term geological storage of CO2," Applied Energy, Elsevier, vol. 88(11), pages 3557-3566.
    16. Yan, G. & Gu, Y., 2010. "Effect of parameters on performance of LNG-FPSO offloading system in offshore associated gas fields," Applied Energy, Elsevier, vol. 87(11), pages 3393-3400, November.
    17. Teyber, Reed & Holladay, Jamelyn & Meinhardt, Kerry & Polikarpov, Evgueni & Thomsen, Edwin & Cui, Jun & Rowe, Andrew & Barclay, John, 2019. "Performance investigation of a high-field active magnetic regenerator," Applied Energy, Elsevier, vol. 236(C), pages 426-436.
    18. Zhao, Guoying & Aziz, Baroz & Hedin, Niklas, 2010. "Carbon dioxide adsorption on mesoporous silica surfaces containing amine-like motifs," Applied Energy, Elsevier, vol. 87(9), pages 2907-2913, September.
    19. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
    20. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:1303-1310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.