IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v135y2014icp382-390.html
   My bibliography  Save this article

Characterizing probability density distributions for household electricity load profiles from high-resolution electricity use data

Author

Listed:
  • Munkhammar, Joakim
  • Rydén, Jesper
  • Widén, Joakim

Abstract

This paper presents a high-resolution bottom-up model of electricity use in an average household based on fit to probability distributions of a comprehensive high-resolution household electricity use data set for detached houses in Sweden. The distributions used in this paper are the Weibull distribution and the Log-Normal distribution. These fitted distributions are analyzed in terms of relative variation estimates of electricity use and standard deviation. It is concluded that the distributions have a reasonable overall goodness of fit both in terms of electricity use and standard deviation. A Kolmogorov–Smirnov test of goodness of fit is also provided. In addition to this, the model is extended to multiple households via convolution of individual electricity use profiles. With the use of the central limit theorem this is analytically extended to the general case of a large number of households. Finally a brief comparison with other models of probability distributions is made along with a discussion regarding the model and its applicability.

Suggested Citation

  • Munkhammar, Joakim & Rydén, Jesper & Widén, Joakim, 2014. "Characterizing probability density distributions for household electricity load profiles from high-resolution electricity use data," Applied Energy, Elsevier, vol. 135(C), pages 382-390.
  • Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:382-390
    DOI: 10.1016/j.apenergy.2014.08.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914009167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiro Yano & Tadahiro Taniguchi, 2015. "Economically Efficient Power Storage Operation by Dealing with the Non-Normality of Power Prediction," Energies, MDPI, vol. 8(10), pages 1-17, October.
    2. Joakim Munkhammar & Lars Mattsson & Jesper Rydén, 2017. "Polynomial probability distribution estimation using the method of moments," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    3. Shepero, Mahmoud & van der Meer, Dennis & Munkhammar, Joakim & Widén, Joakim, 2018. "Residential probabilistic load forecasting: A method using Gaussian process designed for electric load data," Applied Energy, Elsevier, vol. 218(C), pages 159-172.
    4. Alireza Vahabzadeh & Alibakhsh Kasaeian & Hasan Monsef & Alireza Aslani, 2020. "A Fuzzy-SOM Method for Fraud Detection in Power Distribution Networks with High Penetration of Roof-Top Grid-Connected PV," Energies, MDPI, vol. 13(5), pages 1-24, March.
    5. Fuentes-Cortés, Luis Fabián & Flores-Tlacuahuac, Antonio & Ponce-Ortega, José María, 2019. "Integrated utility pricing and design of water-energy rural off-grid systems," Energy, Elsevier, vol. 177(C), pages 511-529.
    6. Munkhammar, Joakim & Widén, Joakim & Rydén, Jesper, 2015. "On a probability distribution model combining household power consumption, electric vehicle home-charging and photovoltaic power production," Applied Energy, Elsevier, vol. 142(C), pages 135-143.
    7. Trespalacios, Alfredo & Cortés, Lina M. & Perote, Javier, 2020. "Uncertainty in electricity markets from a semi-nonparametric approach," Energy Policy, Elsevier, vol. 137(C).
    8. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    9. Moon, Sang-Keun & Kim, Jin-O, 2017. "Balanced charging strategies for electric vehicles on power systems," Applied Energy, Elsevier, vol. 189(C), pages 44-54.
    10. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    11. Ye, Chengjin & Ding, Yi & Song, Yonghua & Lin, Zhenzhi & Wang, Lei, 2018. "A data driven multi-state model for distribution system flexible planning utilizing hierarchical parallel computing," Applied Energy, Elsevier, vol. 232(C), pages 9-25.
    12. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    13. Yang, Ting & Ren, Minglun & Zhou, Kaile, 2018. "Identifying household electricity consumption patterns: A case study of Kunshan, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 861-868.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    2. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    3. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    4. John Curtis & Brian Stanley, 2016. "Analysing Residential Energy Demand: An Error Correction Demand System Approach for Ireland," The Economic and Social Review, Economic and Social Studies, vol. 47(2), pages 185-211.
    5. Omar Shafqat & Elena Malakhatka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    6. Wei Yu & Baizhan Li & Yarong Lei & Meng Liu, 2011. "Analysis of a Residential Building Energy Consumption Demand Model," Energies, MDPI, vol. 4(3), pages 1-13, March.
    7. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    8. Anna Kipping & Erik Trømborg, 2017. "Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock," Energies, MDPI, vol. 11(1), pages 1-20, December.
    9. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    10. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    11. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    12. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    14. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
    15. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    16. Muratori, Matteo & Roberts, Matthew C. & Sioshansi, Ramteen & Marano, Vincenzo & Rizzoni, Giorgio, 2013. "A highly resolved modeling technique to simulate residential power demand," Applied Energy, Elsevier, vol. 107(C), pages 465-473.
    17. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2015. "Long term outlook of primary energy consumption of the Italian thermoelectric sector: Impact of fuel and carbon prices," Energy, Elsevier, vol. 87(C), pages 153-164.
    18. Xavier Faure & Tim Johansson & Oleksii Pasichnyi, 2022. "The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale," Energies, MDPI, vol. 15(4), pages 1-18, February.
    19. Dujuan Yang & Harry Timmermans & Aloys Borgers, 2016. "The prevalence of context-dependent adjustment of activity-travel patterns in energy conservation strategies: results from a mixture-amount stated adaptation experiment," Transportation, Springer, vol. 43(1), pages 79-100, January.
    20. Scott Kelly & Michael Pollitt & Doug Crawford-Brown, 2011. "Building performance evaluation and certification in the UK: a critical review of SAP?," Working Papers EPRG 1219, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:135:y:2014:i:c:p:382-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.