IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2021-02-43.html
   My bibliography  Save this article

Renewable Energy Deployment for Sustainable Development in the Asia Pacific: A Review

Author

Listed:
  • Farah Roslan

    (Centre for Fundamental Studies, Universiti Sultan Zainal Abidin, 21030, Kuala Terengganu, Malaysia.)

Abstract

The prominence of energy in output expansion and industrial growth in the Asia-Pacific is globally acknowledged. Nevertheless, the vigorous utilisation of energy leads to energy security concerns and price volatility are thought to have directed to an undesirable effect of energy dependence in the region. An application of renewable energy technologies (RETs) could promote the steady development of the region since diversifying fuel resources is the first step to enhance energy security and reducing energy dependence. This paper highlighted the current trend of the energy sector in the Asia-Pacific and discussed some measures in facilitating the deployment of alternative energy in the region. Therefore this paper can provide new insight for further investigations on the current energy sector and the application of clean energy for strengthening energy security in the Asia-Pacific.

Suggested Citation

  • Farah Roslan, 2021. "Renewable Energy Deployment for Sustainable Development in the Asia Pacific: A Review," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 361-367.
  • Handle: RePEc:eco:journ2:2021-02-43
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/9926/5744
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/9926/5744
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alekhina, Victoriia & Yoshino, Naoyuki, 2018. "Impact of World Oil Prices on an Energy Exporting Economy Including Monetary Policy," ADBI Working Papers 828, Asian Development Bank Institute.
    2. Jaffe Adam B. & Stavins Robert N., 1995. "Dynamic Incentives of Environmental Regulations: The Effects of Alternative Policy Instruments on Technology Diffusion," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 43-63, November.
    3. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    4. Menanteau, Philippe & Finon, Dominique & Lamy, Marie-Laure, 2003. "Prices versus quantities: choosing policies for promoting the development of renewable energy," Energy Policy, Elsevier, vol. 31(8), pages 799-812, June.
    5. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    6. Apergis, Nicholas & Payne, James E., 2010. "Renewable energy consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(1), pages 656-660, January.
    7. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    8. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    9. Philippe Menanteau & Dominique Finon & Marie-Laure Lamy, 2003. "Prices versus quantities :environmental policies for promoting the development of renewable energy," Post-Print halshs-00480457, HAL.
    10. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    11. Ian Cronshaw & Quentin Grafton, 2014. "Reflections on Energy Security in the Asia Pacific," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 1(1), pages 127-143, January.
    12. Apergis, Nicholas & Payne, James E., 2010. "Coal consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(3), pages 1353-1359, March.
    13. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farah Roslan & Borhan Abdullah & Mohd Khairul Amri Kamarudin, 2023. "A panel data method towards the effectiveness of sources of finance in stimulating the realisation of renewable energy technologies: Empirical evidence for Asia‐Pacific," Australian Economic Papers, Wiley Blackwell, vol. 62(4), pages 693-722, December.
    2. Nihal Ahmed & Franklin Ore Areche & Adnan Ahmed Sheikh & Amine Lahiani, 2022. "Green Finance and Green Energy Nexus in ASEAN Countries: A Bootstrap Panel Causality Test," Energies, MDPI, vol. 15(14), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romano, Antonio A. & Scandurra, Giuseppe & Carfora, Alfonso & Fodor, Mate, 2017. "Renewable investments: The impact of green policies in developing and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 738-747.
    2. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    3. Patricia Milanés-Montero & Alberto Arroyo-Farrona & Esteban Pérez-Calderón, 2018. "Assessment of the Influence of Feed-In Tariffs on the Profitability of European Photovoltaic Companies," Sustainability, MDPI, vol. 10(10), pages 1-16, September.
    4. Polzin, Friedemann & Migendt, Michael & Täube, Florian A. & von Flotow, Paschen, 2015. "Public policy influence on renewable energy investments—A panel data study across OECD countries," Energy Policy, Elsevier, vol. 80(C), pages 98-111.
    5. Farah Roslan & Ștefan Cristian Gherghina & Jumadil Saputra & Mário Nuno Mata & Farah Diana Mohmad Zali & José Moleiro Martins, 2022. "A Panel Data Approach towards the Effectiveness of Energy Policies in Fostering the Implementation of Solar Photovoltaic Technology: Empirical Evidence for Asia-Pacific," Energies, MDPI, vol. 15(10), pages 1-22, May.
    6. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    7. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    8. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    9. Magnani, Natalia & Vaona, Andrea, 2013. "Regional spillover effects of renewable energy generation in Italy," Energy Policy, Elsevier, vol. 56(C), pages 663-671.
    10. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    11. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2021. "Store-on grid scheme model for grid-tied solar photovoltaic systems for industrial sector application: Benefits analysis," Renewable Energy, Elsevier, vol. 171(C), pages 1257-1275.
    12. del Río, Pablo, 2012. "The dynamic efficiency of feed-in tariffs: The impact of different design elements," Energy Policy, Elsevier, vol. 41(C), pages 139-151.
    13. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    14. Margaux Escoffier & Emmanuel Hache & Valérie Mignon & Anthony Paris, 2019. "Determinants of investments in solar photovoltaic: Do oil prices really matter?," Working Papers hal-04141866, HAL.
    15. Patrik Söderholm & Ger Klaassen, 2007. "Wind Power in Europe: A Simultaneous Innovation–Diffusion Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(2), pages 163-190, February.
    16. Escoffier, Margaux & Hache, Emmanuel & Mignon, Valérie & Paris, Anthony, 2021. "Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter?," Energy Economics, Elsevier, vol. 97(C).
    17. Shahbaz, Muhammad & Rasool, Ghulam & Ahmed, Khalid & Mahalik, Mantu Kumar, 2016. "Considering the effect of biomass energy consumption on economic growth: Fresh evidence from BRICS region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1442-1450.
    18. Justyna Godawska & Joanna Wyrobek, 2021. "The Impact of Environmental Policy Stringency on Renewable Energy Production in the Visegrad Group Countries," Energies, MDPI, vol. 14(19), pages 1-23, September.
    19. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    20. Sinsel, Simon R. & Markard, Jochen & Hoffmann, Volker H., 2020. "How deployment policies affect innovation in complementary technologies—evidence from the German energy transition," Technological Forecasting and Social Change, Elsevier, vol. 161(C).

    More about this item

    Keywords

    Energy Security; Renewable energy; Asia-Pacific;
    All these keywords.

    JEL classification:

    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2021-02-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.