IDEAS home Printed from https://ideas.repec.org/a/cuf/journl/y2015v16i1bao.html

Should We Demean the Data?

Author

Listed:
  • Yong Bao

    (Department of Economics, Purdue University)

Abstract

The sample average is an unbiased estimator of the population mean, so it may seem innocuous that for estimating model parameters that do not involve the population mean, the data can be demeaned first. Using a first-order moving average (MA) model for example, we derive the analytical approximate biases of the quasi maximum likelihood estimators (QMLEs) based on the original and demeaned data. The bias results indicate that the QMLEs can behave quite differently in finite samples and it is not always advisable to demean the data if the MA parameter is of primary interest to estimate.

Suggested Citation

  • Yong Bao, 2015. "Should We Demean the Data?," Annals of Economics and Finance, Society for AEF, vol. 16(1), pages 163-171, May.
  • Handle: RePEc:cuf:journl:y:2015:v:16:i:1:bao
    as

    Download full text from publisher

    File URL: http://down.aefweb.net/AefArticles/aef160108Bao.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
    2. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    3. Ullah, Aman, 2004. "Finite Sample Econometrics," OUP Catalogue, Oxford University Press, number 9780198774488.
    4. Cordeiro, Gauss M. & Klein, Ruben, 1994. "Bias correction in ARMA models," Statistics & Probability Letters, Elsevier, vol. 19(3), pages 169-176, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Funjika, Patricia & Getachew, Yoseph Y., 2022. "Colonial origin, ethnicity and intergenerational mobility in Africa," World Development, Elsevier, vol. 153(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stelios Arvanitis & Antonis Demos, "undated". "A Class of Indirect Inference Estimators: Higher Order Asymptotics and Approximate Bias Correction (Revised)," DEOS Working Papers 1411, Athens University of Economics and Business, revised 23 Sep 2014.
    2. Bao Yong & Zhang Ru, 2013. "Estimation Bias and Feasible Conditional Forecasts from the First-Order Moving Average Model," Journal of Time Series Econometrics, De Gruyter, vol. 6(1), pages 63-80, July.
    3. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    4. Demos Antonis & Kyriakopoulou Dimitra, 2019. "Finite-Sample Theory and Bias Correction of Maximum Likelihood Estimators in the EGARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-20, January.
    5. Aman Ullah & Yong Bao & Ru Zhang, 2014. "Moment Approximation for Unit Root Models with Nonnormal Errors," Working Papers 201401, University of California at Riverside, Department of Economics.
    6. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.
    7. Kiviet, Jan F. & Phillips, Garry D.A., 2014. "Improved variance estimation of maximum likelihood estimators in stable first-order dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 424-448.
    8. Liu-Evans, Gareth, 2014. "A note on approximating moments of least squares estimators," MPRA Paper 57543, University Library of Munich, Germany.
    9. Yong Bao & Aman Ullah, 2021. "Analytical Finite Sample Econometrics: From A. L. Nagar to Now," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 17-37, December.
    10. Yong Li & Xiaobin Liu & Jun Yu & Tao Zeng, 2018. "A New Wald Test for Hypothesis Testing Based on MCMC outputs," Papers 1801.00973, arXiv.org.
    11. Yong Bao & Aman Ullah & Yun Wang & Jun Yu, 2013. "Bias in the Mean Reversion Estimator in Continuous-Time Gaussian and Levy Processes," Working Papers CoFie-01-2013, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    12. Kiviet, Jan F. & Phillips, Garry D.A., 2012. "Higher-order asymptotic expansions of the least-squares estimation bias in first-order dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3705-3729.
    13. Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
    14. Tae-Hwy Lee & Aman Ullah & He Wang, 2023. "The Second-order Bias and Mean Squared Error of Quantile Regression Estimators," Working Papers 202313, University of California at Riverside, Department of Economics.
    15. Lee, Tae-Hwy & Ullah, Aman & Wang, He, 2018. "The second-order bias of quantile estimators," Economics Letters, Elsevier, vol. 173(C), pages 143-147.
    16. Ruby Chiu‐Hsing Weng & D. Stephen Coad, 2021. "Bias approximations for likelihood‐based estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1474-1497, December.
    17. Tae-Hwy Lee & Aman Ullah & He Wang, 2024. "The second-order bias and mean squared error of quantile regression estimators," Indian Economic Review, Springer, vol. 59(1), pages 11-68, October.
    18. Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025. "Bayesian neural networks for macroeconomic analysis," Journal of Econometrics, Elsevier, vol. 249(PC).
    19. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    20. Eric Ghysels & Leonardo Iania & Jonas Striaukas, 2018. "Quantile-based Inflation Risk Models," Working Paper Research 349, National Bank of Belgium.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cuf:journl:y:2015:v:16:i:1:bao. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Qiang Gao (email available below). General contact details of provider: https://edirc.repec.org/data/emcufcn.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.