IDEAS home Printed from https://ideas.repec.org/a/oup/oxecpp/v74y2022i3p701-720..html
   My bibliography  Save this article

Professionals Inflation Forecasts: The Two Dimensions Of Forecaster Inattentiveness
[“Sectoral and aggregate inflation dynamics in the euro area”]

Author

Listed:
  • Joshy Easaw
  • Roberto Golinelli

Abstract

This article explores professionals’ inflation forecasts, specifically the structure of their forecast error. Recent papers considering professionals’ inflation forecast have focused on the role of forecaster inattentiveness. We consider a new additional dimension of inattentiveness which is observed when forecasters form multi-period forecasts, and implicitly their perceived momentum of inflation. The present analysis introduces a novel model that is investigated empirically using survey-based data for the US. It establishes a new structure for the professionals’ forecast error accounting for both dimensions of inattentiveness, which relates respectively to forecast updating and multi-period forecasting in each period.

Suggested Citation

  • Joshy Easaw & Roberto Golinelli, 2022. "Professionals Inflation Forecasts: The Two Dimensions Of Forecaster Inattentiveness [“Sectoral and aggregate inflation dynamics in the euro area”]," Oxford Economic Papers, Oxford University Press, vol. 74(3), pages 701-720.
  • Handle: RePEc:oup:oxecpp:v:74:y:2022:i:3:p:701-720.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/oep/gpab012
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
    2. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    3. Jeremy M. Piger & Robert H. Rasche, 2008. "Inflation: Do Expectations Trump the Gap?," International Journal of Central Banking, International Journal of Central Banking, vol. 4(4), pages 85-116, December.
    4. Huw Dixon & Joshy Easaw & Saeed Heravi, 2020. "Forecasting inflation gap persistence: Do financial sector professionals differ from nonfinancial sector ones?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(3), pages 461-474, July.
    5. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    6. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    7. Fuhrer, Jeff, 2017. "Expectations as a source of macroeconomic persistence: Evidence from survey expectations in a dynamic macro model," Journal of Monetary Economics, Elsevier, vol. 86(C), pages 22-35.
    8. Easaw, Joshy & Golinelli, Roberto & Malgarini, Marco, 2013. "What determines households inflation expectations? Theory and evidence from a household survey," European Economic Review, Elsevier, vol. 61(C), pages 1-13.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    10. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    11. Stephen G. Cecchetti & Guy Debelle, 2006. "Has the inflation process changed? [‘Did the underlying behaviour of inflation change in the 1980s? A study of 22 countries,’]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 21(46), pages 312-352.
    12. Maria Elena Bontempi & Irene Mammi, 2015. "Implementing a strategy to reduce the instrument count in panel GMM," Stata Journal, StataCorp LLC, vol. 15(4), pages 1075-1097, December.
    13. Corvoisier, Sandrine & Mojon, Benoît, 2005. "Breaks in the mean of inflation: how they happen and what to do with them," Working Paper Series 451, European Central Bank.
    14. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    15. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    16. Donald W. K. Andrews, 2003. "Tests for Parameter Instability and Structural Change with Unknown Change Point: A Corrigendum," Econometrica, Econometric Society, vol. 71(1), pages 395-397, January.
    17. Perron, P, 1993. "Erratum [The Great Crash, the Oil Price Shock and the Unit Root Hypothesis]," Econometrica, Econometric Society, vol. 61(1), pages 248-249, January.
    18. Shih‐Tang Hwu & Chang‐Jin Kim, 2019. "Estimating Trend Inflation Based on Unobserved Components Model: Is It Correlated with the Inflation Gap?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(8), pages 2305-2319, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Daniel Aromí & Martín Llada, 2024. "Are professional forecasters inattentive to public discussions about inflation? The case of Argentina," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2572-2587, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Easaw, Joshy & Golinelli, Roberto, 2014. "Inflation Expectations and the Two Forms of Inattentiveness," Cardiff Economics Working Papers E2014/21, Cardiff University, Cardiff Business School, Economics Section.
    2. Kamber, Güneş & Wong, Benjamin, 2020. "Global factors and trend inflation," Journal of International Economics, Elsevier, vol. 122(C).
    3. Huw Dixon & Joshy Easaw & Saeed Heravi, 2020. "Forecasting inflation gap persistence: Do financial sector professionals differ from nonfinancial sector ones?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(3), pages 461-474, July.
    4. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    5. Alessandra Canepa, & Menelaos G. Karanasos & Alexandros G. Paraskevopoulos,, 2019. "Second Order Time Dependent Inflation Persistence in the United States: a GARCH-in-Mean Model with Time Varying Coefficients," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201911, University of Turin.
    6. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
    7. Georgios P. Kouretas & Mark E. Wohar, 2012. "The dynamics of inflation: a study of a large number of countries," Applied Economics, Taylor & Francis Journals, vol. 44(16), pages 2001-2026, June.
    8. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
    9. Cai, Zongwu & Juhl, Ted, 2023. "The distribution of rolling regression estimators," Journal of Econometrics, Elsevier, vol. 235(2), pages 1447-1463.
    10. Joseph P. Byrne & Alexandros Kontonikas & Alberto Montagnoli, 2010. "The Time‐Series Properties Of Uk Inflation: Evidence From Aggregate And Disaggregate Data," Scottish Journal of Political Economy, Scottish Economic Society, vol. 57(1), pages 33-47, February.
    11. Gómez-Puig, Marta & Sosvilla-Rivero, Simón, 2014. "Causality and contagion in EMU sovereign debt markets," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 12-27.
    12. Simone Elmer & Thomas Maag, 2009. "The Persistence of Inflation in Switzerland," KOF Working papers 09-235, KOF Swiss Economic Institute, ETH Zurich.
    13. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    14. Chang, Tsangyao & Lee, Chia-Hao, 2011. "Hysteresis in Unemployment for G-7 Countries: Threshold Unit Root Test," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-14, December.
    15. Rossi, Barbara & Sekhposyan, Tatevik, 2014. "Evaluating predictive densities of US output growth and inflation in a large macroeconomic data set," International Journal of Forecasting, Elsevier, vol. 30(3), pages 662-682.
    16. Pierre Perron, 2020. "L'estimation de modèles avec changements structurels multiples," L'Actualité Economique, Société Canadienne de Science Economique, vol. 96(4), pages 789-837.
    17. McNeil, James, 2023. "Monetary policy and the term structure of inflation expectations with information frictions," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    18. Jim Lee, 1999. "Inflation Targeting In Practice: Further Evidence," Contemporary Economic Policy, Western Economic Association International, vol. 17(3), pages 332-347, July.
    19. Pierre Perron & Yohei Yamamoto, 2016. "On the Usefulness or Lack Thereof of Optimality Criteria for Structural Change Tests," Econometric Reviews, Taylor & Francis Journals, vol. 35(5), pages 782-844, May.
    20. Kuan, Chung-Ming, 1998. "Tests for changes in models with a polynomial trend," Journal of Econometrics, Elsevier, vol. 84(1), pages 75-91, May.

    More about this item

    JEL classification:

    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates
    • E5 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:oxecpp:v:74:y:2022:i:3:p:701-720.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/oep .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.