IDEAS home Printed from https://ideas.repec.org/a/bla/stratm/v41y2020i8p1528-1543.html
   My bibliography  Save this article

Idea twins: Simultaneous discoveries as a research tool

Author

Listed:
  • Michaël Bikard

Abstract

Research Summary Over half a century after Merton's (1963) description of simultaneous discoveries “as a strategic research site” for social science, they are hardly ever studied. This paper illustrates the potential of this phenomenon as a research tool. First, I describe their vast theoretical potential for strategy and innovation research and review prior works on the topic. Second, I describe a new method that generates lists of recent simultaneous discoveries in science systematically and automatically using openly available sources. Third, I make the resulting dataset available for anyone to use. Managerial Summary Despite much anecdotal evidence that different people can simultaneously come up with essentially the same creative idea, little attention has been given to this phenomenon. Yet, “idea twins” have a deep impact on creative workers, and can teach us a lot about strategy and innovation. In this paper, I describe their potential as a research tool and the types of questions they can help to answer. I also propose a method to “harvest” simultaneous discoveries in science and provide a dataset that includes thousands of examples.

Suggested Citation

  • Michaël Bikard, 2020. "Idea twins: Simultaneous discoveries as a research tool," Strategic Management Journal, Wiley Blackwell, vol. 41(8), pages 1528-1543, August.
  • Handle: RePEc:bla:stratm:v:41:y:2020:i:8:p:1528-1543
    DOI: 10.1002/smj.3162
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/smj.3162
    Download Restriction: no

    File URL: https://libkey.io/10.1002/smj.3162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paola Criscuolo & Oliver Alexy & Dmitry Sharapov & Ammon Salter, 2019. "Lifting the veil: Using a quasi‐replication approach to assess sample selection bias in patent‐based studies," Strategic Management Journal, Wiley Blackwell, vol. 40(2), pages 230-252, February.
    2. Jeff S. Armstrong & Michael R. Darby & Lynne G. Zucker, 2003. "Commercializing knowledge: university science, knowledge capture and firm performance in biotechnology," Proceedings, Federal Reserve Bank of Dallas, issue Sep, pages 149-170.
    3. Michaël Bikard, 2018. "Made in Academia: The Effect of Institutional Origin on Inventors’ Attention to Science," Organization Science, INFORMS, vol. 29(5), pages 818-836, October.
    4. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 577-598.
    5. Galasso, Alberto & Schankerman, Mark, 2015. "Patents and cumulative innovation: causal evidence from the courts," LSE Research Online Documents on Economics 61614, London School of Economics and Political Science, LSE Library.
    6. Rebecca Henderson & Adam Jaffe & Manuel Trajtenberg, 2005. "Patent Citations and the Geography of Knowledge Spillovers: A Reassessment: Comment," American Economic Review, American Economic Association, vol. 95(1), pages 461-464, March.
    7. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    8. Stefano Baruffaldi & Julio Raffo, 2017. "The geography of duplicated inventions: evidence from patent citations," Regional Studies, Taylor & Francis Journals, vol. 51(8), pages 1232-1245, August.
    9. Henry Chesbrough & Richard S. Rosenbloom, 2002. "The role of the business model in capturing value from innovation: evidence from Xerox Corporation's technology spin-off companies," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(3), pages 529-555, June.
    10. Sam Arts & Bruno Cassiman & Juan Carlos Gomez, 2018. "Text matching to measure patent similarity," Strategic Management Journal, Wiley Blackwell, vol. 39(1), pages 62-84, January.
    11. Ina Ganguli & Jeffrey Lin & Nicholas Reynolds, 2020. "The Paper Trail of Knowledge Spillovers: Evidence from Patent Interferences," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 278-302, April.
    12. Sabrina T. Howell, 2017. "Financing Innovation: Evidence from R&D Grants," American Economic Review, American Economic Association, vol. 107(4), pages 1136-1164, April.
    13. Pierre Azoulay & Waverly Ding & Toby Stuart, 2009. "The Impact Of Academic Patenting On The Rate, Quality And Direction Of (Public) Research Output," Journal of Industrial Economics, Wiley Blackwell, vol. 57(4), pages 637-676, December.
    14. Peter Thompson & Melanie Fox-Kean, 2005. "Patent Citations and the Geography of Knowledge Spillovers: A Reassessment: Reply," American Economic Review, American Economic Association, vol. 95(1), pages 465-466, March.
    15. Scott Shane, 2000. "Prior Knowledge and the Discovery of Entrepreneurial Opportunities," Organization Science, INFORMS, vol. 11(4), pages 448-469, August.
    16. Peter Thompson & Melanie Fox-Kean, 2005. "Patent Citations and the Geography of Knowledge Spillovers: A Reassessment," American Economic Review, American Economic Association, vol. 95(1), pages 450-460, March.
    17. Stoyan V. Sgourev, 2013. "How Paris Gave Rise to Cubism (and Picasso): Ambiguity and Fragmentation in Radical Innovation," Organization Science, INFORMS, vol. 24(6), pages 1601-1617, December.
    18. Jasjit Singh & Lee Fleming, 2010. "Lone Inventors as Sources of Breakthroughs: Myth or Reality?," Management Science, INFORMS, vol. 56(1), pages 41-56, January.
    19. Lingfei Wu & Dashun Wang & James A. Evans, 2019. "Large teams develop and small teams disrupt science and technology," Nature, Nature, vol. 566(7744), pages 378-382, February.
    20. Nicola Lacetera, 2009. "Different Missions and Commitment Power in R&D Organizations: Theory and Evidence on Industry-University Alliances," Organization Science, INFORMS, vol. 20(3), pages 565-582, June.
    21. Sen Chai, 2017. "Near Misses in the Breakthrough Discovery Process," Organization Science, INFORMS, vol. 28(3), pages 411-428, June.
    22. Mukherjee, Arijit & Stern, Scott, 2009. "Disclosure or secrecy? The dynamics of Open Science," International Journal of Industrial Organization, Elsevier, vol. 27(3), pages 449-462, May.
    23. Frédéric C. Godart & Charles Galunic, 2019. "Explaining the Popularity of Cultural Elements: Networks, Culture, and the Structural Embeddedness of High Fashion Trends," Organization Science, INFORMS, vol. 30(1), pages 151-168, February.
    24. Kenneth G Huang & Jiatao Li, 2019. "Adopting knowledge from reverse innovations? Transnational patents and signaling from an emerging economy," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 50(7), pages 1078-1102, September.
    25. Kevin J. Boudreau & Eva C. Guinan & Karim R. Lakhani & Christoph Riedl, 2016. "Looking Across and Looking Beyond the Knowledge Frontier: Intellectual Distance, Novelty, and Resource Allocation in Science," Management Science, INFORMS, vol. 62(10), pages 2765-2783, October.
    26. Michaël Bikard & Keyvan Vakili & Florenta Teodoridis, 2019. "When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on Academic Productivity," Organization Science, INFORMS, vol. 30(2), pages 426-445, March.
    27. Zucker, Lynne G & Darby, Michael R & Brewer, Marilynn B, 1998. "Intellectual Human Capital and the Birth of U.S. Biotechnology Enterprises," American Economic Review, American Economic Association, vol. 88(1), pages 290-306, March.
    28. Alberto Galasso & Mark Schankerman, 2015. "Patents and Cumulative Innovation: Causal Evidence from the Courts," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(1), pages 317-369.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Sihong & Fan, Di & Su, Yiyi, 2021. "The Co-Evolution of Global Legitimation and Technology Upgrading: The Case of Huawei," American Business Review, Pompea College of Business, University of New Haven, vol. 24(2), pages 147-172, November.
    2. Kevin A. Bryan & Heidi L. Williams, 2021. "Innovation: Market Failures and Public Policies," NBER Working Papers 29173, National Bureau of Economic Research, Inc.
    3. Clayton, Paige & Lanahan, Lauren & Nelson, Andrew, 2022. "Dissecting diffusion: Tracing the plurality of factors that shape knowledge diffusion," Research Policy, Elsevier, vol. 51(1).
    4. Balázs Kovács & Gianluca Carnabuci & Filippo Carlo Wezel, 2021. "Categories, attention, and the impact of inventions," Strategic Management Journal, Wiley Blackwell, vol. 42(5), pages 992-1023, May.
    5. Kang, Byeongwoo & Bekkers, Rudi, 2022. "The determinants of parallel invention : Measuring the role of information sharing and personal interaction between inventors," IIR Working Paper 22-06, Institute of Innovation Research, Hitotsubashi University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sijie Feng, 2020. "The proximity of ideas: An analysis of patent text using machine learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-19, July.
    2. Boeker, Warren & Howard, Michael D. & Basu, Sandip & Sahaym, Arvin, 2021. "Interpersonal relationships, digital technologies, and innovation in entrepreneurial ventures," Journal of Business Research, Elsevier, vol. 125(C), pages 495-507.
    3. Feldman, Maryann P. & Kogler, Dieter F., 2010. "Stylized Facts in the Geography of Innovation," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 381-410, Elsevier.
    4. Sam Arts & Lee Fleming, 2018. "Paradise of Novelty—Or Loss of Human Capital? Exploring New Fields and Inventive Output," Organization Science, INFORMS, vol. 29(6), pages 1074-1092, December.
    5. Ronald J. Mann & Marian Underweiser, 2012. "A New Look at Patent Quality: Relating Patent Prosecution to Validity," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 9(1), pages 1-32, March.
    6. William R. Kerr & Frederic Robert-Nicoud, 2020. "Tech Clusters," Journal of Economic Perspectives, American Economic Association, vol. 34(3), pages 50-76, Summer.
    7. Stuart J. H. Graham & Alan C. Marco & Amanda F. Myers, 2018. "Patent transactions in the marketplace: Lessons from the USPTO Patent Assignment Dataset," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 27(3), pages 343-371, September.
    8. Pierre Azoulay & Joshua S. Graff Zivin & Bhaven N. Sampat, 2011. "The Diffusion of Scientific Knowledge across Time and Space: Evidence from Professional Transitions for the Superstars of Medicine," NBER Chapters, in: The Rate and Direction of Inventive Activity Revisited, pages 107-155, National Bureau of Economic Research, Inc.
    9. Michaël Bikard & Keyvan Vakili & Florenta Teodoridis, 2019. "When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on Academic Productivity," Organization Science, INFORMS, vol. 30(2), pages 426-445, March.
    10. Dirk Czarnitzki & Christian Rammer & Andrew Toole, 2014. "University spin-offs and the “performance premium”," Small Business Economics, Springer, vol. 43(2), pages 309-326, August.
    11. Jasjit Singh & Ajay Agrawal, 2011. "Recruiting for Ideas: How Firms Exploit the Prior Inventions of New Hires," Management Science, INFORMS, vol. 57(1), pages 129-150, January.
    12. Pontus Braunerhjelm & Ding Ding & Per Thulin, 2018. "The knowledge spillover theory of intrapreneurship," Small Business Economics, Springer, vol. 51(1), pages 1-30, June.
    13. Michaël Bikard & Matt Marx, 2020. "Bridging Academia and Industry: How Geographic Hubs Connect University Science and Corporate Technology," Management Science, INFORMS, vol. 66(8), pages 3425-3443, August.
    14. Michaël Bikard, 2018. "Made in Academia: The Effect of Institutional Origin on Inventors’ Attention to Science," Organization Science, INFORMS, vol. 29(5), pages 818-836, October.
    15. Arts, Sam & Hou, Jianan & Gomez, Juan Carlos, 2021. "Natural language processing to identify the creation and impact of new technologies in patent text: Code, data, and new measures," Research Policy, Elsevier, vol. 50(2).
    16. Jung, Hyun Ju & Lee, Jeongsik “Jay”, 2014. "The impacts of science and technology policy interventions on university research: Evidence from the U.S. National Nanotechnology Initiative," Research Policy, Elsevier, vol. 43(1), pages 74-91.
    17. Hyuk-Soo Kwon & Jihong Lee & Sokbae Lee & Ryungha Oh, 2022. "Knowledge spillovers and patent citations: trends in geographic localization, 1976–2015," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 31(3), pages 123-147, April.
    18. Carlino, Gerald & Kerr, William R., 2015. "Agglomeration and Innovation," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 349-404, Elsevier.
    19. Emanuele Bacchiocchi & Fabio Montobbio, 2010. "International Knowledge Diffusion and Home‐bias Effect: Do USPTO and EPO Patent Citations Tell the Same Story?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 112(3), pages 441-470, September.
    20. Keith Head & Yao Amber Li & Asier Minondo, 2019. "Geography, Ties, and Knowledge Flows: Evidence from Citations in Mathematics," The Review of Economics and Statistics, MIT Press, vol. 101(4), pages 713-727, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stratm:v:41:y:2020:i:8:p:1528-1543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/0143-2095 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.