IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i1p137-154.html
   My bibliography  Save this article

Inference of Seasonal Long-memory Time Series with Measurement Error

Author

Listed:
  • Henghsiu Tsai
  • Heiko Rachinger
  • Edward M.H. Lin

Abstract

type="main" xml:id="sjos12099-abs-0001"> We consider the Whittle likelihood estimation of seasonal autoregressive fractionally integrated moving-average models in the presence of an additional measurement error and show that the spectral maximum Whittle likelihood estimator is asymptotically normal. We illustrate by simulation that ignoring measurement errors may result in incorrect inference. Hence, it is pertinent to test for the presence of measurement errors, which we do by developing a likelihood ratio (LR) test within the framework of Whittle likelihood. We derive the non-standard asymptotic null distribution of this LR test and the limiting distribution of LR test under a sequence of local alternatives. Because in practice, we do not know the order of the seasonal autoregressive fractionally integrated moving-average model, we consider three modifications of the LR test that takes model uncertainty into account. We study the finite sample properties of the size and the power of the LR test and its modifications. The efficacy of the proposed approach is illustrated by a real-life example.

Suggested Citation

  • Henghsiu Tsai & Heiko Rachinger & Edward M.H. Lin, 2015. "Inference of Seasonal Long-memory Time Series with Measurement Error," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 137-154, March.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:1:p:137-154
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12099
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Casas, Isabel & Gao, Jiti, 2008. "Econometric estimation in long-range dependent volatility models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 72-83, November.
    2. Tanaka, Katsuto, 2002. "A Unified Approach To The Measurement Error Problem In Time Series Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 278-296, April.
    3. Wilfredo Palma & Ngai Hang Chan, 2005. "Efficient Estimation of Seasonal Long‐Range‐Dependent Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 863-892, November.
    4. Hosoya, Yuzo, 1996. "The quasi-likelihood approach to statistical inference on multiple time-series with long-range dependence," Journal of Econometrics, Elsevier, vol. 73(1), pages 217-236, July.
    5. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    6. L. A. Gil-Alana & P. M. Robinson, 2001. "Testing of seasonal fractional integration in UK and Japanese consumption and income," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(2), pages 95-114.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Haldrup, Niels & Nielsen, Morten Orregaard, 2007. "Estimation of fractional integration in the presence of data noise," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3100-3114, March.
    9. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    10. Palma, Wilfredo & Bondon, Pascal, 2003. "On the eigenstructure of generalized fractional processes," Statistics & Probability Letters, Elsevier, vol. 65(2), pages 93-101, November.
    11. Gil-Alana, Luis A., 2002. "Seasonal long memory in the aggregate output," Economics Letters, Elsevier, vol. 74(3), pages 333-337, February.
    12. Ray, Bonnie K., 1993. "Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model," International Journal of Forecasting, Elsevier, vol. 9(2), pages 255-269, August.
    13. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asai, Manabu & McAleer, Michael & Peiris, Shelton, 2020. "Realized stochastic volatility models with generalized Gegenbauer long memory," Econometrics and Statistics, Elsevier, vol. 16(C), pages 42-54.
    2. Asai Manabu & Peiris Shelton & McAleer Michael & Allen David E., 2020. "Cointegrated Dynamics for a Generalized Long Memory Process: Application to Interest Rates," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-18, January.
    3. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
    4. Reisen, Valdério Anselmo & Monte, Edson Zambon & da Conceição Franco, Glaura & Sgrancio, Adriano Marcio & Molinares, Fábio Alexander Fajardo & Bondon, Pascal & Ziegelmann, Flávio Augusto & Abraham, Bo, 2018. "Robust estimation of fractional seasonal processes: Modeling and forecasting daily average SO2 concentrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 27-43.
    5. Asai, M. & Peiris, S. & McAleer, M.J. & Allen, D.E., 2018. "Cointegrated Dynamics for A Generalized Long Memory Process," Econometric Institute Research Papers EI 2018-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis A. Gil-Alana & Juncal Cunado & Fernando Perez de Gracia, 2008. "Tourism in the Canary Islands: forecasting using several seasonal time series models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 621-636.
    2. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
    3. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    4. Josu Arteche, 2012. "Standard and seasonal long memory in volatility: an application to Spanish inflation," Empirical Economics, Springer, vol. 42(3), pages 693-712, June.
    5. Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006. "Forecasting electricity demand using generalized long memory," International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.
    6. Reisen, Valdério Anselmo & Monte, Edson Zambon & da Conceição Franco, Glaura & Sgrancio, Adriano Marcio & Molinares, Fábio Alexander Fajardo & Bondon, Pascal & Ziegelmann, Flávio Augusto & Abraham, Bo, 2018. "Robust estimation of fractional seasonal processes: Modeling and forecasting daily average SO2 concentrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 27-43.
    7. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    8. Antonio Rubia & Trino-Manuel Ñíguez, 2006. "Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
    9. Grace Lee Ching Yap, 2020. "Optimal Filter Approximations for Latent Long Memory Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 547-568, August.
    10. David Bolder & Shudan Liu, 2007. "Examining Simple Joint Macroeconomic and Term-Structure Models: A Practitioner's Perspective," Staff Working Papers 07-49, Bank of Canada.
    11. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
    12. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    13. Harris, Richard D.F. & Nguyen, Anh, 2013. "Long memory conditional volatility and asset allocation," International Journal of Forecasting, Elsevier, vol. 29(2), pages 258-273.
    14. Guglielmo Maria Caporale & Luis Gil-Alana, 2006. "Long memory at the long-run and the seasonal monthly frequencies in the US money stock," Applied Economics Letters, Taylor & Francis Journals, vol. 13(15), pages 965-968.
    15. Christian Fischer & Luis Alberiko Gil-Alana, 2005. "The Nature of the Relationship between International Tourism and International Trade: The Case of Ge," Faculty Working Papers 15/05, School of Economics and Business Administration, University of Navarra.
    16. L.A. Gil-Alana, 2005. "Fractional Cyclical Structures & Business Cycles in the Specification of the US Real Output," European Research Studies Journal, European Research Studies Journal, vol. 0(1-2), pages 99-126.
    17. Cabos Karen & Funke Michael & Siegfried Nikolaus A., 2001. "Some Thoughts on Monetary Targeting vs. Inflation Targeting," German Economic Review, De Gruyter, vol. 2(3), pages 219-238, August.
    18. Per Frederiksen & Morten Orregaard Nielsen, 2008. "Bias-Reduced Estimation of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 496-512, Fall.
    19. F. DePenya & L. Gil-Alana, 2006. "Testing of nonstationary cycles in financial time series data," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 47-65, August.
    20. Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:1:p:137-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.