IDEAS home Printed from https://ideas.repec.org/f/pli529.html
   My authors  Follow this author

Edward Meng Hua Lin

Personal Details

First Name:Edward
Middle Name:Meng Hua
Last Name:Lin
Suffix:
RePEc Short-ID:pli529

Affiliation

東海大學統計學系 (Tunghai University, Department of Statistics)

http://stat.thu.edu.tw
Taichung, Taiwan

Research output

as
Jump to: Working papers Articles

Working papers

  1. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2014. "Bayesian Assessment of Dynamic Quantile Forecasts," Working Papers 2014-04, University of Sydney Business School, Discipline of Business Analytics.
  2. Chen, Cathy W.S. & Gerlach, Richard & Lee, Wcw & Lin, Edward M.H., 2011. "Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis," Working Papers 03/2011, University of Sydney Business School, Discipline of Business Analytics.

Articles

  1. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
  2. Lee, Jin-Ping & Lin, Edward M.H. & Lin, James Juichia & Zhao, Yang, 2020. "Bank systemic risk and CEO overconfidence," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
  3. Chang, Carolyn W. & Li, Xiaodan & Lin, Edward M.H. & Yu, Min-Teh, 2018. "Systemic risk, interconnectedness, and non-core activities in Taiwan insurance industry," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 273-284.
  4. Edward M. H. Lin & Edward W. Sun & Min-Teh Yu, 2018. "Systemic risk, financial markets, and performance of financial institutions," Annals of Operations Research, Springer, vol. 262(2), pages 579-603, March.
  5. Richard Gerlach & Cathy W. S. Chen & Edward M. H. Lin, 2016. "Bayesian Assessment of Dynamic Quantile Forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(8), pages 751-764, December.
  6. Henghsiu Tsai & Heiko Rachinger & Edward M.H. Lin, 2015. "Inference of Seasonal Long-memory Time Series with Measurement Error," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 137-154, March.
  7. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2014. "Bayesian estimation of smoothly mixing time-varying parameter GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 194-209.
  8. S.T. Boris Choy & Cathy W.S. Chen & Edward M.H. Lin, 2014. "Bivariate asymmetric GARCH models with heavy tails and dynamic conditional correlations," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1297-1313, July.
  9. Cathy W.S. Chen & Richard Gerlach & Edward M. H. Lin & W. C. W. Lee, 2012. "Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(8), pages 661-687, December.
  10. Lin, Edward M.H. & Chen, Cathy W.S. & Gerlach, Richard, 2012. "Forecasting volatility with asymmetric smooth transition dynamic range models," International Journal of Forecasting, Elsevier, vol. 28(2), pages 384-399.
  11. Cathy W. S. Chen & Mike K. P. So & Edward M. H. Lin, 2009. "Volatility forecasting with double Markov switching GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 681-697.
  12. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2008. "Volatility forecasting using threshold heteroskedastic models of the intra-day range," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2990-3010, February.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2014. "Bayesian Assessment of Dynamic Quantile Forecasts," Working Papers 2014-04, University of Sydney Business School, Discipline of Business Analytics.

    Cited by:

    1. Rangika Peiris & Minh-Ngoc Tran & Chao Wang & Richard Gerlach, 2024. "Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model," Papers 2408.13588, arXiv.org.
    2. Tomohiro Ando & Jushan Bai, 2020. "Quantile Co-Movement in Financial Markets: A Panel Quantile Model With Unobserved Heterogeneity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 266-279, January.

  2. Chen, Cathy W.S. & Gerlach, Richard & Lee, Wcw & Lin, Edward M.H., 2011. "Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis," Working Papers 03/2011, University of Sydney Business School, Discipline of Business Analytics.

    Cited by:

    1. Chang, Carolyn W. & Li, Xiaodan & Lin, Edward M.H. & Yu, Min-Teh, 2018. "Systemic risk, interconnectedness, and non-core activities in Taiwan insurance industry," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 273-284.
    2. Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," KIER Working Papers 775, Kyoto University, Institute of Economic Research.
    3. Wenting Zhang & Shigeyuki Hamori, 2020. "Do Machine Learning Techniques and Dynamic Methods Help Forecast US Natural Gas Crises?," Energies, MDPI, vol. 13(9), pages 1-22, May.
    4. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    5. Marius Galabe Sampid & Haslifah M Hasim & Hongsheng Dai, 2018. "Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-33, June.
    6. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    7. Cathy W.S. Chen & Toshiaki Watanabe, 2019. "Bayesian modeling and forecasting of Value‐at‐Risk via threshold realized volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 747-765, May.
    8. Wilson Ye Chen & Richard H. Gerlach, 2017. "Semiparametric GARCH via Bayesian model averaging," Papers 1708.07587, arXiv.org.
    9. Candia, Claudio & Herrera, Rodrigo, 2024. "An empirical review of dynamic extreme value models for forecasting value at risk, expected shortfall and expectile," Journal of Empirical Finance, Elsevier, vol. 77(C).
    10. Laura Garcia-Jorcano & Alfonso Novales, 2019. "A dominance approach for comparing the performance of VaR forecasting models," Documentos de Trabajo del ICAE 2019-23, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    11. Lu-Tao Zhao & Li-Na Liu & Zi-Jie Wang & Ling-Yun He, 2019. "Forecasting Oil Price Volatility in the Era of Big Data: A Text Mining for VaR Approach," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    12. Kim, Minjo & Lee, Sangyeol, 2016. "Nonlinear expectile regression with application to Value-at-Risk and expected shortfall estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 1-19.
    13. Cathy W. S. Chen & Edward M. H. Lin & Tara F. J. Huang, 2022. "Bayesian quantile forecasting via the realized hysteretic GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1317-1337, November.
    14. Chui-Chun Tsai & Tsun-Siou Lee, 2017. "Liquidity-Adjusted Value-at-Risk for TWSE Leverage/ Inverse ETFs: A Hellinger Distance Measure Research," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 13(1), pages 53-81, February.
    15. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    16. Cathy Chen & Feng-Chi Liu & Mike So, 2013. "Threshold variable selection of asymmetric stochastic volatility models," Computational Statistics, Springer, vol. 28(6), pages 2415-2447, December.
    17. Jean-Paul Laurent & Hassan Omidi Firouzi, 2022. "Market Risk and Volatility Weighted Historical Simulation After Basel III," Working Papers hal-03679434, HAL.
    18. Chang Liu & Raja Nassar & Min Guo, 2015. "A Method of Retail Mortgage Stress Testing: Based on Time‐Frame and Magnitude Analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(4), pages 261-274, July.
    19. Chi Ming Wong & Lei Lam Olivia Ting, 2016. "A Quantile Regression Approach to the Multiple Period Value at Risk Estimation," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 12(1), pages 1-35, February.
    20. Oksana Hoshovska & Zhanna Poplavska & Jana Kajanova & Olena Trevoho, 2023. "Random Risk Factors Influencing Cash Flows: Modifying RADR," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    21. Chen, Cathy W.S. & Watanabe, Toshiaki & Lin, Edward M.H., 2023. "Bayesian estimation of realized GARCH-type models with application to financial tail risk management," Econometrics and Statistics, Elsevier, vol. 28(C), pages 30-46.
    22. Fries, Christian P. & Nigbur, Tobias & Seeger, Norman, 2017. "Displaced relative changes in historical simulation: Application to risk measures of interest rates with phases of negative rates," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 175-198.
    23. Maria-Teresa Bosch-Badia & Joan Montllor-Serrats & Maria-Antonia Tarrazon-Rodon, 2020. "Risk Analysis through the Half-Normal Distribution," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    24. Sonia Benito Muela & Carmen López-Martín & Mª Ángeles Navarro, 2017. "The Role of the Skewed Distributions in the Framework of Extreme Value Theory (EVT)," International Business Research, Canadian Center of Science and Education, vol. 10(11), pages 88-102, November.
    25. Mauro Bernardi & Leopoldo Catania & Lea Petrella, 2014. "Are news important to predict large losses?," Papers 1410.6898, arXiv.org, revised Oct 2014.
    26. Pilar Abad Romero & Sonia Benito Muela & Miguel Angel Sánchez Granero & Carmen López, 2013. "Evaluating the performance of the skewed distributions to forecast Value at Risk in the Global Financial Crisis," Documentos de Trabajo del ICAE 2013-40, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.

Articles

  1. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).

    Cited by:

    1. Chen, Yi-Ting & Sun, Edward W. & Chang, Ming-Feng & Lin, Yi-Bing, 2021. "Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0," International Journal of Production Economics, Elsevier, vol. 238(C).
    2. Jiaming Liu & Xuemei Zhang & Haitao Xiong, 2024. "Credit risk prediction based on causal machine learning: Bayesian network learning, default inference, and interpretation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1625-1660, August.
    3. Cao, Ting & Cook, Wade D. & Kristal, M. Murat, 2022. "Has the technological investment been worth it? Assessing the aggregate efficiency of non-homogeneous bank holding companies in the digital age," Technological Forecasting and Social Change, Elsevier, vol. 178(C).

  2. Lee, Jin-Ping & Lin, Edward M.H. & Lin, James Juichia & Zhao, Yang, 2020. "Bank systemic risk and CEO overconfidence," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

    Cited by:

    1. Bernhard Kassner, 2023. "Taming Overconfident CEOs Through Stricter Financial Regulation," Rationality and Competition Discussion Paper Series 375, CRC TRR 190 Rationality and Competition.
    2. Jieqi Guan & Brian M. Lam & Ching Chi Lam & Ming Liu, 2022. "CEO overconfidence and the level of short-selling activity," Review of Quantitative Finance and Accounting, Springer, vol. 58(2), pages 685-708, February.
    3. Zhang, Ximeng & Liu, Deqing & Chen, Jie, 2024. "Managerial overconfidence and corporate resilience," Finance Research Letters, Elsevier, vol. 62(PA).
    4. Bassem Salhi, 2021. "RETRACTED: The Relationship between CEO Psychological Biases, Corporate Governance and Corporate Social Responsibility," JRFM, MDPI, vol. 14(7), pages 1-19, July.
    5. Baumöhl, Eduard & Bouri, Elie & Hoang, Thi-Hong-Van & Shahzad, Syed Jawad Hussain & Výrost, Tomáš, 2020. "Increasing systemic risk during the Covid-19 pandemic: A cross-quantilogram analysis of the banking sector," EconStor Preprints 222580, ZBW - Leibniz Information Centre for Economics.
    6. Le, Anh-Tuan & Doan, Anh-Tuan & Lin, Kun-Li, 2024. "CEO overconfidence and the informativeness of bank stock prices," International Review of Financial Analysis, Elsevier, vol. 94(C).
    7. Andreas Haufler & Bernhard Kassner, 2024. "Matching for Risk-Taking: Overconfident Bankers and Government-Protected Banks," CESifo Working Paper Series 11336, CESifo.
    8. Shutong Zhang & Jun Nagayasu, 2023. "Regional Policies’ Impacts on Urban Migration:Evidence from Special Economic Zones in China," TUPD Discussion Papers 45, Graduate School of Economics and Management, Tohoku University.
    9. Chen, Po-Jung & Hsu, Ching-Yu, 2022. "CEO optimism, CEO selection, compensation, and corporate investment decision: The case of CEOs who were rehired as CEOs by another firms after turnover," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).

  3. Chang, Carolyn W. & Li, Xiaodan & Lin, Edward M.H. & Yu, Min-Teh, 2018. "Systemic risk, interconnectedness, and non-core activities in Taiwan insurance industry," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 273-284.

    Cited by:

    1. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhang, Wei, 2019. "Financial systemic risk measurement based on causal network connectedness analysis," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 290-307.
    2. Hoang Tien Nguyen & Ai Ngoc Nhan Le & Quang Thu Luu & Ngoc Thi Thanh Nguyen & Khoa Dang Duong, 2023. "Foreign Ownership, Investor Attention and the Risk-Taking Behavior of Property and Casualty Insurance Firms: Evidence From Vietnam," SAGE Open, , vol. 13(4), pages 21582440231, December.
    3. Dai, Zhifeng & Zhu, Haoyang, 2022. "Time-varying spillover effects and investment strategies between WTI crude oil, natural gas and Chinese stock markets related to belt and road initiative," Energy Economics, Elsevier, vol. 108(C).
    4. Chen, Wei & Hou, Xiaoli & Jiang, Manrui & Jiang, Cheng, 2022. "Identifying systemically important financial institutions in complex network: A case study of Chinese stock market," Emerging Markets Review, Elsevier, vol. 50(C).
    5. Cristina Zeldea, 2020. "Modeling the Connection between Bank Systemic Risk and Balance-Sheet Liquidity Proxies through Random Forest Regressions," Administrative Sciences, MDPI, vol. 10(3), pages 1-14, August.
    6. Wided Khiari & Salim Ben Sassi, 2019. "On Identifying the Systemically Important Tunisian Banks: An Empirical Approach Based on the △CoVaR Measures," Risks, MDPI, vol. 7(4), pages 1-15, December.
    7. Pham, Thach N. & Powell, Robert & Bannigidadmath, Deepa, 2021. "Systemically important banks in Asian emerging markets: Evidence from four systemic risk measures," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
    8. Fenghua Wen & Kaiyan Weng & Wei-Xing Zhou, 2020. "Measuring the contribution of Chinese financial institutions to systemic risk: an extended asymmetric CoVaR approach," Risk Management, Palgrave Macmillan, vol. 22(4), pages 310-337, December.
    9. Chang, Carolyn W. & Lin, Bing-Huei & Yu, Min-Teh, 2018. "Derivatives trading information, stock market behavior, and financial institutions," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 324-325.
    10. Dai, Zhifeng & Zhu, Haoyang & Zhang, Xinhua, 2022. "Dynamic spillover effects and portfolio strategies between crude oil, gold and Chinese stock markets related to new energy vehicle," Energy Economics, Elsevier, vol. 109(C).
    11. Ghufran Ahmad & Muhammad Suhail Rizwan & Dawood Ashraf, 2021. "Systemic risk and macroeconomic forecasting: A globally applicable copula‐based approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1420-1443, December.
    12. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhang, Wei, 2020. "Research on China's financial systemic risk contagion under jump and heavy-tailed risk," International Review of Financial Analysis, Elsevier, vol. 72(C).
    13. Xiang, Youtao & Borjigin, Sumuya, 2024. "Investment network and stock’s systemic risk contribution: Evidence from China," The Quarterly Review of Economics and Finance, Elsevier, vol. 94(C), pages 113-132.
    14. Khoa Dang Duong & Ai Nhan Ngoc Le & Diep Van Nguyen & Hoa Thanh Phan Le, 2023. "Impact of Ownership Structure and Business Diversifications on the Risk-Taking Behaviors of Insurance Companies in Vietnam," SAGE Open, , vol. 13(3), pages 21582440231, August.
    15. de França Carvalho, João Vinícius & Guimarães, Acássio Silva, 2024. "Systemic risk assessment using complex networks approach: Evidence from the Brazilian (re)insurance market," Research in International Business and Finance, Elsevier, vol. 67(PA).
    16. Zhongzheng, Wang, 2023. "Extreme risk transmission mechanism between oil, green bonds and new energy vehicles," Innovation and Green Development, Elsevier, vol. 2(3).
    17. Lee, Jin-Ping & Lin, Edward M.H. & Lin, James Juichia & Zhao, Yang, 2020. "Bank systemic risk and CEO overconfidence," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    18. Dai, Zhifeng & Zhang, Xiaotong & Yin, Zhujia, 2023. "Extreme time-varying spillovers between high carbon emission stocks, green bond and crude oil: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 118(C).

  4. Edward M. H. Lin & Edward W. Sun & Min-Teh Yu, 2018. "Systemic risk, financial markets, and performance of financial institutions," Annals of Operations Research, Springer, vol. 262(2), pages 579-603, March.

    Cited by:

    1. Xie, Yiwei & Jiao, Feng & Li, Shihan & Liu, Qingfu & Tse, Yiuman, 2022. "Systemic risk in financial institutions: A multiplex network approach," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    2. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhang, Wei, 2019. "Financial systemic risk measurement based on causal network connectedness analysis," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 290-307.
    3. Wan-Ni Lai & Yi-Ting Chen & Edward W. Sun, 2021. "Comonotonicity and low volatility effect," Annals of Operations Research, Springer, vol. 299(1), pages 1057-1099, April.
    4. Subhash Karmakar & Gautam Bandyopadhyay & Jayanta Nath Mukhopadhyay, 2024. "Systemic Risk in Indian Financial Institutions: A Probabilistic Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(3), pages 579-656, September.
    5. Lin Xiao & Arash Sioofy Khoojine, 2024. "Dynamic Anomaly Detection in the Chinese Energy Market During Financial Turbulence Using Ratio Mutual Information and Crude Oil Price Movements," Energies, MDPI, vol. 17(23), pages 1-22, November.
    6. Wang, Ze & Gao, Xiangyun & Huang, Shupei & Sun, Qingru & Chen, Zhihua & Tang, Renwu & Di, Zengru, 2022. "Measuring systemic risk contribution of global stock markets: A dynamic tail risk network approach," International Review of Financial Analysis, Elsevier, vol. 84(C).
    7. Dong, Zhiliang & An, Haizhong & Liu, Sen & Li, Zhengyang & Yuan, Meng, 2020. "Research on the time-varying network structure evolution of the stock indices of the BRICS countries based on fluctuation correlation," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 63-74.
    8. Dionisis Philippas & Catalin Dragomirescu-Gaina & Alexandros Leontitsis & Stephanos Papadamou, 2023. "Built-in challenges within the supervisory architecture of the Eurozone," Journal of Banking Regulation, Palgrave Macmillan, vol. 24(1), pages 15-39, March.
    9. Wu, Shan & Tong, Mu & Yang, Zhongyi & Zhang, Tianyi, 2021. "Interconnectedness, systemic risk, and the influencing factors: Some evidence from China’s financial institutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    10. Zhaoyi Xu & Yuqing Zeng & Yangrong Xue & Shenggang Yang, 2022. "Early Warning of Chinese Yuan’s Exchange Rate Fluctuation and Value at Risk Measure Using Neural Network Joint Optimization Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1293-1315, December.
    11. Cristina Zeldea, 2020. "Modeling the Connection between Bank Systemic Risk and Balance-Sheet Liquidity Proxies through Random Forest Regressions," Administrative Sciences, MDPI, vol. 10(3), pages 1-14, August.
    12. Svetlana Drobyazko & Anna Barwinska-Malajowicz & Boguslaw Slusarczyk & Olga Chubukova & Taliat Bielialov, 2020. "Risk Management in the System of Financial Stability of the Service Enterprise," JRFM, MDPI, vol. 13(12), pages 1-15, November.
    13. Sinem Derindere Köseoğlu, 2023. "Understanding Systemic Risk Dynamics and Economic Growth: Evidence from the Turkish Banking System," Sustainability, MDPI, vol. 15(19), pages 1-24, September.
    14. Yuhao Liu & Petar M. Djurić & Young Shin Kim & Svetlozar T. Rachev & James Glimm, 2021. "Systemic Risk Modeling with Lévy Copulas," JRFM, MDPI, vol. 14(6), pages 1-20, June.
    15. Michele Leonardo Bianchi & Giovanni De Luca & Giorgia Rivieccio, 2020. "CoVaR with volatility clustering, heavy tails and non-linear dependence," Papers 2009.10764, arXiv.org.
    16. Qifa Xu & Liukai Wang & Cuixia Jiang & Fu Jia & Lujie Chen, 2022. "Tail dependence network of new energy vehicle industry in mainland China," Annals of Operations Research, Springer, vol. 315(1), pages 565-590, August.
    17. Limin Wen & Junxue Li & Tong Pu & Yiying Zhang, 2024. "Comparisons of multivariate contribution measures of risk contagion and their applications in cryptocurrency market," Papers 2411.13384, arXiv.org.
    18. Vidal-Llana, Xenxo & Guillén, Montserrat, 2022. "Cross-sectional quantile regression for estimating conditional VaR of returns during periods of high volatility," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    19. Edward W. Sun & Timm Kruse & Yi-Ting Chen, 2019. "Stylized algorithmic trading: satisfying the predictive near-term demand of liquidity," Annals of Operations Research, Springer, vol. 281(1), pages 315-347, October.
    20. Nandita Bhattacharjee & Ambika Prasad Pati, 2023. "Exploring Systemic Risk Measurement Issues in Shadow Banks: A Case of an Emerging Economy," South Asian Journal of Macroeconomics and Public Finance, , vol. 12(2), pages 186-217, December.
    21. Lu Xiong & Jiyao Luo & Hanna Vise & Madison White, 2023. "Distributed Least-Squares Monte Carlo for American Option Pricing," Risks, MDPI, vol. 11(8), pages 1-16, August.
    22. James R. Barth & Sunghoon Joo & Kang‐Bok Lee, 2022. "Bank–client cross‐ownership of bank stocks: A network analysis," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 45(2), pages 280-312, June.
    23. Peter Grundke, 2019. "Ranking consistency of systemic risk measures: a simulation-based analysis in a banking network model," Review of Quantitative Finance and Accounting, Springer, vol. 52(4), pages 953-990, May.
    24. Tian, Sihua & Li, Shaofang & Gu, Qinen, 2023. "Measurement and contagion modelling of systemic risk in China's financial sectors: Evidence for functional data analysis and complex network," International Review of Financial Analysis, Elsevier, vol. 90(C).
    25. Ba, Shusong & Li, Lu & Huang, Wenli & Yang, Chen, 2020. "Heterogeneity risks and negative externality," Economic Modelling, Elsevier, vol. 87(C), pages 401-415.
    26. Cipollini, Fabrizio & Ielasi, Federica & Querci, Francesca, 2024. "Asset encumbrance in banks: Is systemic risk affected?," Research in International Business and Finance, Elsevier, vol. 67(PA).
    27. Maghyereh, Aktham & Abdoh, Hussein, 2024. "Tail risk connectedness among GCC banks episodes from the Global Financial Crisis to COVID-19 pandemic," The Quarterly Review of Economics and Finance, Elsevier, vol. 96(C).
    28. Saghi, Nadia & Srour, Zainab & Viviani, Jean-Laurent & Jezzini, Mohamad, 2023. "Systemic risk in European banks: Does ownership structure matter?," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 88-111.
    29. Matteo Foglia & Eliana Angelini, 2021. "The triple (T3) dimension of systemic risk: Identifying systemically important banks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 7-26, January.
    30. Pacelli, Vincenzo & Miglietta, Federica & Foglia, Matteo, 2022. "The extreme risk connectedness of the new financial system: European evidence," International Review of Financial Analysis, Elsevier, vol. 84(C).
    31. Claudia Klüppelberg & Miriam Isabel Seifert, 2019. "Financial risk measures for a network of individual agents holding portfolios of light-tailed objects," Finance and Stochastics, Springer, vol. 23(4), pages 795-826, October.

  5. Richard Gerlach & Cathy W. S. Chen & Edward M. H. Lin, 2016. "Bayesian Assessment of Dynamic Quantile Forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(8), pages 751-764, December.
    See citations under working paper version above.
  6. Henghsiu Tsai & Heiko Rachinger & Edward M.H. Lin, 2015. "Inference of Seasonal Long-memory Time Series with Measurement Error," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 137-154, March.

    Cited by:

    1. Manabu Asai & Shelton Peiris & Michael McAleer, 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Documentos de Trabajo del ICAE 2017-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    2. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
    3. Asai Manabu & Peiris Shelton & McAleer Michael & Allen David E., 2020. "Cointegrated Dynamics for a Generalized Long Memory Process: Application to Interest Rates," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-18, January.
    4. Reisen, Valdério Anselmo & Monte, Edson Zambon & da Conceição Franco, Glaura & Sgrancio, Adriano Marcio & Molinares, Fábio Alexander Fajardo & Bondon, Pascal & Ziegelmann, Flávio Augusto & Abraham, Bo, 2018. "Robust estimation of fractional seasonal processes: Modeling and forecasting daily average SO2 concentrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 27-43.
    5. Asai, M. & Peiris, S. & McAleer, M.J. & Allen, D.E., 2018. "Cointegrated Dynamics for A Generalized Long Memory Process," Econometric Institute Research Papers EI 2018-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

  7. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2014. "Bayesian estimation of smoothly mixing time-varying parameter GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 194-209.

    Cited by:

    1. Niklas Ahlgren & Alexander Back & Timo Terasvirta, 2024. "A new GARCH model with a deterministic time-varying intercept," Papers 2410.03239, arXiv.org, revised Oct 2024.
    2. Chen, Cathy W.S. & Lee, Sangyeol, 2016. "Generalized Poisson autoregressive models for time series of counts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 51-67.
    3. Cathy W.S. Chen & Toshiaki Watanabe, 2019. "Bayesian modeling and forecasting of Value‐at‐Risk via threshold realized volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 747-765, May.
    4. Manh Cuong Dong & Cathy W. S. Chen & Sangyoel Lee & Songsak Sriboonchitta, 2019. "How Strong is the Relationship Among Gold and USD Exchange Rates? Analytics Based on Structural Change Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 343-366, January.

  8. S.T. Boris Choy & Cathy W.S. Chen & Edward M.H. Lin, 2014. "Bivariate asymmetric GARCH models with heavy tails and dynamic conditional correlations," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1297-1313, July.

    Cited by:

    1. Chang, Carolyn W. & Li, Xiaodan & Lin, Edward M.H. & Yu, Min-Teh, 2018. "Systemic risk, interconnectedness, and non-core activities in Taiwan insurance industry," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 273-284.
    2. Cathy W. S. Chen & Hong Than-Thi & Manabu Asai, 2021. "On a Bivariate Hysteretic AR-GARCH Model with Conditional Asymmetry in Correlations," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 413-433, August.
    3. Thanakorn Nitithumbundit & Jennifer S. K. Chan, 2020. "ECM Algorithm for Auto-Regressive Multivariate Skewed Variance Gamma Model with Unbounded Density," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1169-1191, September.
    4. Nitithumbundit, Thanakorn & Chan, Jennifer S.K., 2022. "Covid-19 impact on Cryptocurrencies market using Multivariate Time Series Models," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 365-375.
    5. Do, A. & Powell, R. & Yong, J. & Singh, A., 2020. "Time-varying asymmetric volatility spillover between global markets and China’s A, B and H-shares using EGARCH and DCC-EGARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

  9. Cathy W.S. Chen & Richard Gerlach & Edward M. H. Lin & W. C. W. Lee, 2012. "Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(8), pages 661-687, December.
    See citations under working paper version above.
  10. Lin, Edward M.H. & Chen, Cathy W.S. & Gerlach, Richard, 2012. "Forecasting volatility with asymmetric smooth transition dynamic range models," International Journal of Forecasting, Elsevier, vol. 28(2), pages 384-399.

    Cited by:

    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    3. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    4. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    5. Wu, Xinyu & Hou, Xinmeng, 2020. "Forecasting volatility with component conditional autoregressive range model," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    6. Qu, Hui & Zhang, Yi, 2022. "Asymmetric multivariate HAR models for realized covariance matrix: A study based on volatility timing strategies," Economic Modelling, Elsevier, vol. 106(C).
    7. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2014. "Bayesian estimation of smoothly mixing time-varying parameter GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 194-209.
    8. Leandro Maciel, 2012. "A Hybrid Fuzzy GJR-GARCH Modeling Approach for Stock Market Volatility Forecasting," Brazilian Review of Finance, Brazilian Society of Finance, vol. 10(3), pages 337-367.
    9. Leandro Maciel & Fernando Gomide & Rosangela Ballini, 2016. "Evolving Fuzzy-GARCH Approach for Financial Volatility Modeling and Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 379-398, October.
    10. Ng, Kok Haur & Peiris, Shelton & Chan, Jennifer So-kuen & Allen, David & Ng, Kooi Huat, 2017. "Efficient modelling and forecasting with range based volatility models and its application," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 448-460.
    11. Wu, Xinyu & Xie, Haibin & Zhang, Huanming, 2022. "Time-varying risk aversion and renminbi exchange rate volatility: Evidence from CARR-MIDAS model," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    12. Juan Benjamín Duarte Duarte & Juan Manuel Mascare?nas Pérez-Iñigo, 2014. "Comprobación de la eficiencia débil en los principales mercados financieros latinoamericanos," Estudios Gerenciales, Universidad Icesi, November.
    13. Markus Vogl, 2022. "Quantitative modelling frontiers: a literature review on the evolution in financial and risk modelling after the financial crisis (2008–2019)," SN Business & Economics, Springer, vol. 2(12), pages 1-69, December.
    14. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2019. "Range-based DCC models for covariance and value-at-risk forecasting," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 58-76.
    15. CHEN, Cathy W.S. & WENG, Monica M.C. & WATANABE, Toshiaki & 渡部, 渡部, 2015. "Employing Bayesian Forecasting of Value-at-Risk to Determine an Appropriate Model for Risk Management," Discussion paper series HIAS-E-16, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    16. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.

  11. Cathy W. S. Chen & Mike K. P. So & Edward M. H. Lin, 2009. "Volatility forecasting with double Markov switching GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 681-697.

    Cited by:

    1. David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
    2. Maciej Augustyniak & Mathieu Boudreault & Manuel Morales, 2018. "Maximum Likelihood Estimation of the Markov-Switching GARCH Model Based on a General Collapsing Procedure," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 165-188, March.
    3. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    4. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
    5. Marius Galabe Sampid & Haslifah M Hasim & Hongsheng Dai, 2018. "Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-33, June.
    6. Cifter, Atilla, 2012. "Volatility Forecasting with Asymmetric Normal Mixture Garch Model: Evidence from South Africa," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 127-142, June.
    7. Funke, Michael & Shu, Chang & Cheng, Xiaoqiang & Eraslan, Sercan, 2015. "Assessing the CNH–CNY pricing differential: Role of fundamentals, contagion and policy," Journal of International Money and Finance, Elsevier, vol. 59(C), pages 245-262.
    8. S.T. Boris Choy & Cathy W.S. Chen & Edward M.H. Lin, 2014. "Bivariate asymmetric GARCH models with heavy tails and dynamic conditional correlations," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1297-1313, July.
    9. Pierre-Julien Trombe & Pierre Pinson & Henrik Madsen, 2012. "A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations," Energies, MDPI, vol. 5(3), pages 1-37, March.
    10. Kuang-Liang Chang & Charles Ka Yui Leung, 2021. "How did the asset markets change after the Global Financial Crisis?," ISER Discussion Paper 1124, Institute of Social and Economic Research, Osaka University.
    11. Chang, Kuang-Liang, 2012. "Volatility regimes, asymmetric basis effects and forecasting performance: An empirical investigation of the WTI crude oil futures market," Energy Economics, Elsevier, vol. 34(1), pages 294-306.
    12. Bagher Adabi & Mohsen Mehrara & Shapour Mohammadi, 2015. "Evaluation Approaches of Value at Risk for Tehran Stock Exchange," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 19(1), pages 41-62, Winter.
    13. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    14. Liu, Hsiang-Hsi & Chuang, Wen-I & Huang, Jih-Jeng & Chen, Yu-Hao, 2016. "The overconfident trading behavior of individual versus institutional investors," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 518-539.
    15. Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
    16. Liu, Qingfu & Wong, Ieokhou & An, Yunbi & Zhang, Jinqing, 2014. "Asymmetric Information and Volatility Forecasting in Commodity Futures Markets," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 79-97.
    17. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2020. "Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction," Energy Economics, Elsevier, vol. 92(C).

  12. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2008. "Volatility forecasting using threshold heteroskedastic models of the intra-day range," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2990-3010, February.

    Cited by:

    1. S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
    2. Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," KIER Working Papers 775, Kyoto University, Institute of Economic Research.
    3. Liang-Ching Lin & Li-Hsien Sun, 2019. "Modeling financial interval time series," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-20, February.
    4. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    5. Chen, Qian & Gerlach, Richard H., 2013. "The two-sided Weibull distribution and forecasting financial tail risk," International Journal of Forecasting, Elsevier, vol. 29(4), pages 527-540.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Piotr Fiszeder & Marta Ma³ecka, 2022. "Forecasting volatility during the outbreak of Russian invasion of Ukraine: application to commodities, stock indices, currencies, and cryptocurrencies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(4), pages 939-967, December.
    8. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    9. Pavlos I. Zitis & Stelios M. Potirakis & Alex Alexandridis, 2024. "Forecasting Forex Market Volatility Using Deep Learning Models and Complexity Measures," JRFM, MDPI, vol. 17(12), pages 1-22, December.
    10. Yuta Kurose, 2022. "Bayesian GARCH modeling for return and range," Economics Bulletin, AccessEcon, vol. 42(3), pages 1717-1727.
    11. Tan, Shay-Kee & Ng, Kok-Haur & Chan, Jennifer So-Kuen & Mohamed, Ibrahim, 2019. "Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 537-551.
    12. Haase, Marco & Huss, Matthias, 2018. "Guilty speculators? Range-based conditional volatility in a cross-section of wheat futures," Journal of Commodity Markets, Elsevier, vol. 10(C), pages 29-46.
    13. Borovkova, Svetlana & Permana, Ferry J., 2009. "Implied volatility in oil markets," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2022-2039, April.
    14. Ng, Kok Haur & Peiris, Shelton & Chan, Jennifer So-kuen & Allen, David & Ng, Kooi Huat, 2017. "Efficient modelling and forecasting with range based volatility models and its application," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 448-460.
    15. Wu, Xinyu & Xie, Haibin & Zhang, Huanming, 2022. "Time-varying risk aversion and renminbi exchange rate volatility: Evidence from CARR-MIDAS model," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    16. Richard Gerlach & Declan Walpole & Chao Wang, 2017. "Semi-parametric Bayesian tail risk forecasting incorporating realized measures of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 199-215, February.
    17. Yuta Kurose, 2021. "Stochastic volatility model with range-based correction and leverage," Papers 2110.00039, arXiv.org, revised Oct 2021.
    18. Godfrey Marozva & Margaret Rutendo Magwedere, 2017. "Macroeconomic Variables, Leverage, Stock Returns and Stock Return Volatility," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 13(4), pages 264-288, AUGUST.
    19. Shay Kee Tan & Kok Haur Ng & Jennifer So-Kuen Chan, 2022. "Predicting Returns, Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models," Mathematics, MDPI, vol. 11(1), pages 1-24, December.
    20. Tsiotas, Georgios, 2012. "On generalised asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 151-172, January.
    21. Bagher Adabi & Mohsen Mehrara & Shapour Mohammadi, 2015. "Evaluation Approaches of Value at Risk for Tehran Stock Exchange," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 19(1), pages 41-62, Winter.
    22. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Modeling and forecasting dynamic conditional correlations with opening, high, low, and closing prices," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 308-321.
    23. Richard Gerlach & Chao Wang, 2016. "Forecasting risk via realized GARCH, incorporating the realized range," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 501-511, April.
    24. Isuru Ratnayake & V. A. Samaranayake, 2022. "Threshold Asymmetric Conditional Autoregressive Range (TACARR) Model," Papers 2202.03351, arXiv.org, revised Mar 2022.
    25. Chan, J.S.K. & Lam, C.P.Y. & Yu, P.L.H. & Choy, S.T.B. & Chen, C.W.S., 2012. "A Bayesian conditional autoregressive geometric process model for range data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3006-3019.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (1) 2014-09-29
  2. NEP-FOR: Forecasting (1) 2014-09-29
  3. NEP-GER: German Papers (1) 2014-09-29
  4. NEP-RMG: Risk Management (1) 2014-09-29

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Edward Meng Hua Lin should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.