IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v70y2021i5p1164-1186.html
   My bibliography  Save this article

Estimating the effect of health service delivery interventions on patient length of stay: A Bayesian survival analysis approach

Author

Listed:
  • Samuel I. Watson
  • Richard J. Lilford
  • Jianxia Sun
  • Julian Bion

Abstract

Health service delivery interventions include a range of hospital ‘quality improvement’ initiatives and broader health system policies. These interventions act through multiple causal pathways to affect patient outcomes and they present distinct challenges for evaluation. In this article, we propose an empirical approach to estimating the effect of service delivery interventions on patient length of stay considering three principle issues: (i) informative censoring of discharge times due to mortality; (ii) post‐treatment selection bias if the intervention affects patient admission probabilities; and (iii) decomposition into direct and indirect pathways mediated by quality. We propose a Bayesian structural survival model framework in which results from a subsample in which required assumptions hold, including conditional independence of the intervention, can be applied to the whole sample. We evaluate a policy of increasing specialist intensity in hospitals at the weekend in England and Wales to inform a cost‐minimisation analysis. Using data on adverse events from a case note review, we compare various specifications of a structural model that allows for observations of hospital quality. We find that the policy was not implemented as intended but would have likely been cost saving, that this conclusion is sensitive to model specification, and that the direct effect accounts for almost all of the total effect rather than any improvement in hospital quality.

Suggested Citation

  • Samuel I. Watson & Richard J. Lilford & Jianxia Sun & Julian Bion, 2021. "Estimating the effect of health service delivery interventions on patient length of stay: A Bayesian survival analysis approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1164-1186, November.
  • Handle: RePEc:bla:jorssc:v:70:y:2021:i:5:p:1164-1186
    DOI: 10.1111/rssc.12501
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12501
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Catalina A. Vallejos & Mark F. J. Steel, 2017. "Bayesian survival modelling of university outcomes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 613-631, February.
    2. Jacob M. Montgomery & Brendan Nyhan & Michelle Torres, 2018. "How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It," American Journal of Political Science, John Wiley & Sons, vol. 62(3), pages 760-775, July.
    3. Gowrisankaran, Gautam & Town, Robert J., 1999. "Estimating the quality of care in hospitals using instrumental variables," Journal of Health Economics, Elsevier, vol. 18(6), pages 747-767, December.
    4. Xiao Song & Marie Davidian & Anastasios A. Tsiatis, 2002. "A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 58(4), pages 742-753, December.
    5. Isabel R. Fulcher & Ilya Shpitser & Stella Marealle & Eric J. Tchetgen Tchetgen, 2020. "Robust inference on population indirect causal effects: the generalized front door criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 199-214, February.
    6. Samuel Watson & Wiji Arulampalam & Stavros Petrou & on behalf of NESCOP, 2017. "The effect of health care expenditure on patient outcomes: Evidence from English neonatal care," Health Economics, John Wiley & Sons, Ltd., vol. 26(12), pages 274-284, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bowblis John R. & Brunt Christopher S. & Grabowski David C., 2016. "Competitive Spillovers and Regulatory Exploitation by Skilled Nursing Facilities," Forum for Health Economics & Policy, De Gruyter, vol. 19(1), pages 45-70, June.
    2. R. R. Croes & Y. J. F. M. Krabbe-Alkemade & M. C. Mikkers, 2018. "Competition and quality indicators in the health care sector: empirical evidence from the Dutch hospital sector," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 19(1), pages 5-19, January.
    3. Christoph Dworschak, 2024. "Bias mitigation in empirical peace and conflict studies: A short primer on posttreatment variables," Journal of Peace Research, Peace Research Institute Oslo, vol. 61(3), pages 462-476, May.
    4. Matilde P. Machado & Ricardo Mora & Antonio Romero-Medina, 2012. "Can We Infer Hospital Quality From Medical Graduates’ Residency Choices?," Journal of the European Economic Association, European Economic Association, vol. 10(6), pages 1400-1424, December.
    5. Amanda Kvarven & Eirik Strømland & Conny Wollbrant & David Andersson & Magnus Johannesson & Gustav Tinghög & Daniel Västfjäll & Kristian Ove R. Myrseth, 2020. "The intuitive cooperation hypothesis revisited: a meta-analytic examination of effect size and between-study heterogeneity," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 6(1), pages 26-42, June.
    6. Joseph J. Doyle, Jr., 2007. "Returns to Local-Area Health Care Spending: Using Health Shocks to Patients Far From Home," NBER Working Papers 13301, National Bureau of Economic Research, Inc.
    7. Orsa Kekezi & Ron Boschma, 2021. "Returns to migration after job loss—The importance of job match," Environment and Planning A, , vol. 53(6), pages 1565-1587, September.
    8. Maude Lavanchy & Patrick Reichert & Jayanth Narayanan & Krishna Savani, 2023. "Applicants’ Fairness Perceptions of Algorithm-Driven Hiring Procedures," Journal of Business Ethics, Springer, vol. 188(1), pages 125-150, November.
    9. Han Il Chang, 2021. "A side effect of a broker's expertise in clientelism: A lab‐experimental study," Bulletin of Economic Research, Wiley Blackwell, vol. 73(3), pages 393-410, July.
    10. Aina, Carmen & Baici, Eliana & Casalone, Giorgia & Pastore, Francesco, 2018. "The Economics of University Dropouts and Delayed Graduation: A Survey," IZA Discussion Papers 11421, Institute of Labor Economics (IZA).
    11. Adhvaryu, Achyuta & Nyshadham, Anant, 2011. "Healthcare Choices, Information and Health Outcomes," Center Discussion Papers 107257, Yale University, Economic Growth Center.
    12. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    13. Ngoma, Hambulo & Hailu, Amare Teklay & Kabwe, Stephen & Angelsen, Arild, 2020. "Pay, talk or ‘whip’ to conserve forests: Framed field experiments in Zambia," World Development, Elsevier, vol. 128(C).
    14. Roula Tsonaka & Geert Verbeke & Emmanuel Lesaffre, 2009. "A Semi-Parametric Shared Parameter Model to Handle Nonmonotone Nonignorable Missingness," Biometrics, The International Biometric Society, vol. 65(1), pages 81-87, March.
    15. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    16. Nils Gutacker & Andrew Street, 2015. "Multidimensional performance assessment using dominance criteria," Working Papers 115cherp, Centre for Health Economics, University of York.
    17. Nils Gutacker & Andrew Street, 2018. "Multidimensional performance assessment of public sector organisations using dominance criteria," Health Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 13-27, February.
    18. Goedde-Menke, Michael & Ingermann, Peter-Hendrik, 2024. "Loan officer specialization and credit defaults," Journal of Banking & Finance, Elsevier, vol. 161(C).
    19. Schuessler, Julian, 2024. "Causal analysis with observational data," OSF Preprints wam94, Center for Open Science.
    20. Lippi Bruni, Matteo & Ugolini, Cristina & Verzulli, Rossella, 2021. "Should I wait or should I go? Travelling versus waiting for better healthcare," Regional Science and Urban Economics, Elsevier, vol. 89(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:5:p:1164-1186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.