IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v172y2009i3p579-598.html
   My bibliography  Save this article

The use of simple reparameterizations to improve the efficiency of Markov chain Monte Carlo estimation for multilevel models with applications to discrete time survival models

Author

Listed:
  • William J. Browne
  • Fiona Steele
  • Mousa Golalizadeh
  • Martin J. Green

Abstract

Summary. We consider the application of Markov chain Monte Carlo (MCMC) estimation methods to random‐effects models and in particular the family of discrete time survival models. Survival models can be used in many situations in the medical and social sciences and we illustrate their use through two examples that differ in terms of both substantive area and data structure. A multilevel discrete time survival analysis involves expanding the data set so that the model can be cast as a standard multilevel binary response model. For such models it has been shown that MCMC methods have advantages in terms of reducing estimate bias. However, the data expansion results in very large data sets for which MCMC estimation is often slow and can produce chains that exhibit poor mixing. Any way of improving the mixing will result in both speeding up the methods and more confidence in the estimates that are produced. The MCMC methodological literature is full of alternative algorithms designed to improve mixing of chains and we describe three reparameterization techniques that are easy to implement in available software. We consider two examples of multilevel survival analysis: incidence of mastitis in dairy cattle and contraceptive use dynamics in Indonesia. For each application we show where the reparameterization techniques can be used and assess their performance.

Suggested Citation

  • William J. Browne & Fiona Steele & Mousa Golalizadeh & Martin J. Green, 2009. "The use of simple reparameterizations to improve the efficiency of Markov chain Monte Carlo estimation for multilevel models with applications to discrete time survival models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 579-598, June.
  • Handle: RePEc:bla:jorssa:v:172:y:2009:i:3:p:579-598
    DOI: 10.1111/j.1467-985X.2009.00586.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2009.00586.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2009.00586.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fiona Steele & Ian Diamond & Duolao Wang, 1996. "The determinants of the duration of contraceptive use in China: A multilevel multinomial discrete-hazards mdeling approach," Demography, Springer;Population Association of America (PAA), vol. 33(1), pages 12-23, February.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Lillard, Lee A., 1993. "Simultaneous equations for hazards : Marriage duration and fertility timing," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 189-217, March.
    4. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moins, Théo & Arbel, Julyan & Girard, Stéphane & Dutfoy, Anne, 2023. "Reparameterization of extreme value framework for improved Bayesian workflow," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Daniel J. Graham & Emma J. McCoy & David A. Stephens, 2013. "Quantifying the effect of area deprivation on child pedestrian casualties by using longitudinal mixed models to adjust for confounding, interference and spatial dependence," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(4), pages 931-950, October.
    3. Bellelli, Francesco S. & Scarpa, Riccardo & Aftab, Ashar, 2023. "An empirical analysis of participation in international environmental agreements," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    4. Shai Mulinari & Sol Pia Juárez & Philippe Wagner & Juan Merlo, 2015. "Does Maternal Country of Birth Matter for Understanding Offspring’s Birthweight? A Multilevel Analysis of Individual Heterogeneity in Sweden," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-19, May.
    5. George Leckie & Rebecca Pillinger & Kelvyn Jones & Harvey Goldstein, 2012. "Multilevel Modeling of Social Segregation," Journal of Educational and Behavioral Statistics, , vol. 37(1), pages 3-30, February.
    6. Oedekoven, C.S. & King, R. & Buckland, S.T. & Mackenzie, M.L. & Evans, K.O. & Burger, L.W., 2016. "Using hierarchical centering to facilitate a reversible jump MCMC algorithm for random effects models," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 79-90.
    7. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2011. "A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1748-1759, April.
    8. Bagnara, Maurizio & Van Oijen, Marcel & Cameron, David & Gianelle, Damiano & Magnani, Federico & Sottocornola, Matteo, 2018. "Bayesian calibration of simple forest models with multiplicative mathematical structure: A case study with two Light Use Efficiency models in an alpine forest," Ecological Modelling, Elsevier, vol. 371(C), pages 90-100.
    9. Konrad Klotzke & Jean-Paul Fox, 2019. "Modeling Dependence Structures for Response Times in a Bayesian Framework," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 649-672, September.
    10. Hee-Koung Joeng & Ming-Hui Chen & Sangwook Kang, 2016. "Proportional exponentiated link transformed hazards (ELTH) models for discrete time survival data with application," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 38-62, January.
    11. Sol Pía Juárez & Juan Merlo, 2013. "Revisiting the Effect of Maternal Smoking during Pregnancy on Offspring Birthweight: A Quasi-Experimental Sibling Analysis in Sweden," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-7, April.
    12. Sol Pía Juárez & Juan Merlo, 2013. "The Effect of Swedish Snuff (Snus) on Offspring Birthweight: A Sibling Analysis," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-6, June.
    13. Hadfield, Jarrod D., 2010. "MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i02).
    14. repec:jss:jstsof:33:i02 is not listed on IDEAS
    15. Plewis Ian & Shlomo Natalie, 2017. "Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies," Journal of Official Statistics, Sciendo, vol. 33(3), pages 753-779, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Courgeau, Daniel, 2007. "Multilevel synthesis. From the group to the individual," MPRA Paper 43189, University Library of Munich, Germany.
    2. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    3. H. Benitez-Silva & F. Heiland, 2008. "Early claiming of social security benefits and labour supply behaviour of older Americans," Applied Economics, Taylor & Francis Journals, vol. 40(23), pages 2969-2985.
    4. Vicente G. Cancho & Gladys D. C. Barriga & Gauss M. Cordeiro & Edwin M. M. Ortega & Adriano K. Suzuki, 2021. "Bayesian survival model induced by frailty for lifetime with long‐term survivors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 299-323, August.
    5. Jaap H. Abbring & Gerard J. Van Den Berg, 2007. "The unobserved heterogeneity distribution in duration analysis," Biometrika, Biometrika Trust, vol. 94(1), pages 87-99.
    6. Mojtaba Ganjali & T. Baghfalaki & D. Berridge, 2014. "A Bayesian Analysis of Unobserved Heterogeneity for Unemployment Duration Data in the Presence of Interval Censoring," International Econometric Review (IER), Econometric Research Association, vol. 6(1), pages 24-41, April.
    7. Djeundje, Viani Biatat & Crook, Jonathan, 2018. "Incorporating heterogeneity and macroeconomic variables into multi-state delinquency models for credit cards," European Journal of Operational Research, Elsevier, vol. 271(2), pages 697-709.
    8. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    9. Song, Shige, 2010. "Mortality consequences of the 1959-1961 Great Leap Forward famine in China: Debilitation, selection, and mortality crossovers," Social Science & Medicine, Elsevier, vol. 71(3), pages 551-558, August.
    10. Hill Kulu, 2014. "Marriage Duration and Divorce: The Seven-Year Itch or a Lifelong Itch?," Demography, Springer;Population Association of America (PAA), vol. 51(3), pages 881-893, June.
    11. Li, Mingyang & Liu, Jian, 2016. "Bayesian hazard modeling based on lifetime data with latent heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 183-189.
    12. Andreas Wienke & Konstantin G. Arbeev & Isabella Locatelli & Anatoli I. Yashin, 2003. "A simulation study of different correlated frailty models and estimation strategies," MPIDR Working Papers WP-2003-018, Max Planck Institute for Demographic Research, Rostock, Germany.
    13. Mitra Rahimzadeh & Ebrahim Hajizadeh & Farzad Eskandari, 2011. "Non-mixture cure correlated frailty models in Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1651-1663, August.
    14. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    15. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    16. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    17. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    18. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    19. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    20. Bagdonavicius, Vilijandas & Nikulin, Mikhail, 2000. "On goodness-of-fit for the linear transformation and frailty models," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 177-188, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:172:y:2009:i:3:p:579-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.