IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v75y2021i3p299-323.html
   My bibliography  Save this article

Bayesian survival model induced by frailty for lifetime with long‐term survivors

Author

Listed:
  • Vicente G. Cancho
  • Gladys D. C. Barriga
  • Gauss M. Cordeiro
  • Edwin M. M. Ortega
  • Adriano K. Suzuki

Abstract

It is introduced the proportional hazards frailty model to allow a discrete distribution for the frailty variable. Frailty zero can be interpreted as being immune or cured. It is defined a class of survival models induced by a discrete frailty having a mixed Poisson distribution, which can account for unobserved dispersion. Further, a new regression to evaluate the effects of covariates in the cure fraction is constructed. Several former cure survival models are special cases of the proposed modeling framework. The inferential approach is based on Bayesian methods. Some simulation results are provided to assess the performance of the new regression. Its importance is illustrated by means of an application to colorectal cancer data.

Suggested Citation

  • Vicente G. Cancho & Gladys D. C. Barriga & Gauss M. Cordeiro & Edwin M. M. Ortega & Adriano K. Suzuki, 2021. "Bayesian survival model induced by frailty for lifetime with long‐term survivors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 299-323, August.
  • Handle: RePEc:bla:stanee:v:75:y:2021:i:3:p:299-323
    DOI: 10.1111/stan.12236
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12236
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tsodikov A.D. & Ibrahim J.G. & Yakovlev A.Y., 2003. "Estimating Cure Rates From Survival Data: An Alternative to Two-Component Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1063-1078, January.
    2. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    3. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    4. Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2002. "Bayesian Inference for Multivariate Survival Data with a Cure Fraction," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 101-126, January.
    5. Vicente Cancho & Josemar Rodrigues & Mario de Castro, 2011. "A flexible model for survival data with a cure rate: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 57-70.
    6. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    7. Cancho, Vicente G. & Dey, Dipak K. & Lachos, Victor H. & Andrade, Marinho G., 2011. "Bayesian nonlinear regression models with scale mixtures of skew-normal distributions: Estimation and case influence diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 588-602, January.
    8. Lancaster, Tony, 1979. "Econometric Methods for the Duration of Unemployment," Econometrica, Econometric Society, vol. 47(4), pages 939-956, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cleanderson R. Fidelis & Edwin M. M. Ortega & Gauss M. Cordeiro, 2024. "Residual Analysis for Poisson-Exponentiated Weibull Regression Models with Cure Fraction," Stats, MDPI, vol. 7(2), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guosheng Yin, 2005. "Bayesian Cure Rate Frailty Models with Application to a Root Canal Therapy Study," Biometrics, The International Biometric Society, vol. 61(2), pages 552-558, June.
    2. Alex Mota & Eder A. Milani & Jeremias Leão & Pedro L. Ramos & Paulo H. Ferreira & Oilson G. Junior & Vera L. D. Tomazella & Francisco Louzada, 2023. "A new cure rate frailty regression model based on a weighted Lindley distribution applied to stomach cancer data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 883-909, September.
    3. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    4. Chen, Chyong-Mei & Lu, Tai-Fang C., 2012. "Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 645-655.
    5. Yoram Halevy, 2004. "Diminishing Impatience: Disentangling Time Preference from Uncertain Lifetime," Levine's Bibliography 122247000000000185, UCLA Department of Economics.
    6. Govert Ewout Bijwaard, 2014. "Multistate event history analysis with frailty," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(58), pages 1591-1620.
    7. Hess, Wolfgang & Persson, Maria, 2010. "The Duration of Trade Revisited. Continuous-Time vs. Discrete-Time Hazards," Working Papers 2010:1, Lund University, Department of Economics.
    8. Jaap H. Abbring & Gerard J. Van Den Berg, 2007. "The unobserved heterogeneity distribution in duration analysis," Biometrika, Biometrika Trust, vol. 94(1), pages 87-99.
    9. R B Davies, 1984. "A Generalised Beta-Logistic Model for Longitudinal Data with an Application to Residential Mobility," Environment and Planning A, , vol. 16(10), pages 1375-1386, October.
    10. Bijwaard, Govert, 2011. "Unobserved Heterogeneity in Multiple-Spell Multiple-States Duration Models," IZA Discussion Papers 5748, Institute of Labor Economics (IZA).
    11. Abbring, Jaap H. & Berg, Gerard J. van den, 2000. "The non-parametric identification of the mixed proportional hazards competing risks model," Serie Research Memoranda 0024, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    12. Guosheng Yin & Joseph G. Ibrahim, 2005. "A General Class of Bayesian Survival Models with Zero and Nonzero Cure Fractions," Biometrics, The International Biometric Society, vol. 61(2), pages 403-412, June.
    13. Hess, Wolfgang & Persson, Maria, 2009. "Survival and Death in International Trade - Discrete-Time Durations of EU Imports," Working Papers 2009:12, Lund University, Department of Economics.
    14. Aranki, Ted & Macchiarelli, Corrado, 2013. "Employment duration and shifts into retirement in the EU," LSE Research Online Documents on Economics 53190, London School of Economics and Political Science, LSE Library.
    15. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    16. Alderman, Harold & Lokshin, Michael & Radyakin, Sergiy, 2011. "Tall claims: Mortality selection and the height of children in India," Economics & Human Biology, Elsevier, vol. 9(4), pages 393-406.
    17. Quiroz, Matias & Villani, Mattias, 2013. "Dynamic mixture-of-experts models for longitudinal and discrete-time survival data," Working Paper Series 268, Sveriges Riksbank (Central Bank of Sweden).
    18. Wiemann, Paul F.V. & Klein, Nadja & Kneib, Thomas, 2022. "Correcting for sample selection bias in Bayesian distributional regression models," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    19. Mário Castro & Ming-Hui Chen & Joseph G. Ibrahim & John P. Klein, 2014. "Bayesian Transformation Models for Multivariate Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 187-199, March.
    20. Wolfgang Hess & Maria Persson, 2012. "The duration of trade revisited," Empirical Economics, Springer, vol. 43(3), pages 1083-1107, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:75:y:2021:i:3:p:299-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.