IDEAS home Printed from https://ideas.repec.org/a/bla/ecorec/v58y1982i1p61-72.html
   My bibliography  Save this article

Factor Substitutability in Australian Manufacturing with Emphasis on Energy Inputs

Author

Listed:
  • MICHELLE TURNOVSK
  • MICHAEL FOLIE
  • ALISTAIR ULPH

Abstract

In this paper a model of the production structure in the aggregate Australian manufacturing sector is estimated, emphasizing the use this sector makes of energy inputs. A translog cost function is estimated with time‐series data for four inputs, capital services, labour services, energy and materials and likewise an energy submodel is estimated for solid fuels, oil, electricity and gas. The substitutabilily and the complementarity relationships between the various factor inputs and between the various fuels are examined: an interesting finding is that capital and energy are substitutes and labour and energy are complements. Factor price elasticities are calculated and turn out to be quite significant. The study concludes that rising energy prices will induce significant shifts in both the mix of fuel inputs and the level of aggregate energy utilization.

Suggested Citation

  • Michelle Turnovsk & Michael Folie & Alistair Ulph, 1982. "Factor Substitutability in Australian Manufacturing with Emphasis on Energy Inputs," The Economic Record, The Economic Society of Australia, vol. 58(1), pages 61-72, March.
  • Handle: RePEc:bla:ecorec:v:58:y:1982:i:1:p:61-72
    DOI: 10.1111/j.1475-4932.1982.tb00349.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1475-4932.1982.tb00349.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1475-4932.1982.tb00349.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Griffin, James M & Gregory, Paul R, 1976. "An Intercountry Translog Model of Energy Substitution Responses," American Economic Review, American Economic Association, vol. 66(5), pages 845-857, December.
    2. Berndt, Ernst R & Wood, David O, 1979. "Engineering and Econometric Interpretations of Energy-Capital Complementarity," American Economic Review, American Economic Association, vol. 69(3), pages 342-354, June.
    3. Hawkins, R G, 1977. "Factor Demands and the Production Function in Selected Australian Manufacturing Industries," Australian Economic Papers, Wiley Blackwell, vol. 16(28), pages 97-111, June.
    4. Michael Denny & J. Douglas May & Cheryl Pinto, 1978. "The Demand for Energy in Canadian Manufacturing: Prologue to an Energy Policy," Canadian Journal of Economics, Canadian Economics Association, vol. 11(2), pages 300-313, May.
    5. Robert S. Pindyck, 1979. "The Structure of World Energy Demand," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262661772, December.
    6. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    7. Byron, R P, 1970. "The Restricted Aitken Estimation of Sets of Demand Relations," Econometrica, Econometric Society, vol. 38(6), pages 816-830, November.
    8. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    9. R. G. Hawkins, 1978. "A Vintage Model of the Demand for Energy and Employment in Australian Manufacturing Industry," Review of Economic Studies, Oxford University Press, vol. 45(3), pages 479-494.
    10. Hudson, Edward A. & Jorgenson, Dale W., 1978. "The economic impact of policies to reduce U.S. energy growth," Resources and Energy, Elsevier, vol. 1(3), pages 205-229, November.
    11. Fuss, Melvyn A, 1977. "The Structure of Technology over Time: A Model for Testing the "Putty-Clay" Hypothesis," Econometrica, Econometric Society, vol. 45(8), pages 1797-1821, November.
    12. Diewert, W E, 1971. "An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function," Journal of Political Economy, University of Chicago Press, vol. 79(3), pages 481-507, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Clive Broadstock, 2010. "Non-linear technological progress and the substitutability of energy for capital: An application using the translog cost function," Economics Bulletin, AccessEcon, vol. 30(1), pages 84-93.
    2. Truong P. Truong, 1985. "Inter‐Fuel and Inter‐Factor Substitution in NSW Manufacturing Industry," The Economic Record, The Economic Society of Australia, vol. 61(3), pages 644-653, September.
    3. Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    4. Sang V Nguyen & Mary L Streitwieser, 1997. "Capital-Energy Substitution Revisted: New Evidence From Micro Data," Working Papers 97-4, Center for Economic Studies, U.S. Census Bureau.
    5. Jean-Guy Devezeaux de Lavergne, 1990. "Chocs pétroliers et industrie : apports récents de l'économétrie de la production," Économie et Prévision, Programme National Persée, vol. 96(5), pages 21-32.
    6. Al-Mutairi, Naief & Burney, Nadeem A., 2002. "Factor substitution, and economies of scale and utilisation in Kuwait's crude oil industry," Energy Economics, Elsevier, vol. 24(4), pages 337-354, July.
    7. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    8. Burney, Nadeem A. & Al-Matrouk, Faisal T., 1996. "Energy conservation in electricity generation: A case study of the electricity and water industry in Kuwait," Energy Economics, Elsevier, vol. 18(1-2), pages 69-79, April.
    9. Elena Lagomarsino & Karen Turner, 2017. "Is the production function Translog or CES? An empirical illustration using UK data," Working Papers 1713, University of Strathclyde Business School, Department of Economics.
    10. repec:ebl:ecbull:v:30:y:2010:i:1:p:84-93 is not listed on IDEAS
    11. Suho Bae, 2009. "The responses of manufacturing businesses to geographical differences in electricity prices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 43(2), pages 453-472, June.
    12. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    13. Shahiduzzaman, M.D. & Alam, Khorshed, 2014. "Interfuel substitution in Australia: a way forward to achieve environmental sustainability," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), January.
    14. Christopoulos, Dimitris K. & Tsionas, Efthymios G., 2002. "Allocative inefficiency and the capital-energy controversy," Energy Economics, Elsevier, vol. 24(4), pages 305-318, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    2. Dargay, Joyce M., 1980. "The Demand for Energy in Swedish Manufacturing," Working Paper Series 33, Research Institute of Industrial Economics, revised Aug 1982.
    3. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
    4. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    5. David Clive Broadstock, 2010. "Non-linear technological progress and the substitutability of energy for capital: An application using the translog cost function," Economics Bulletin, AccessEcon, vol. 30(1), pages 84-93.
    6. Dong Hee Suh, 2015. "Declining Energy Intensity in the U.S. Agricultural Sector: Implications for Factor Substitution and Technological Change," Sustainability, MDPI, vol. 7(10), pages 1-14, September.
    7. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    8. Khalid, Waqar & Özdeşer, Hüseyin & Jalil, Abdul, 2021. "An empirical analysis of inter-factor and inter-fuel substitution in the energy sector of Pakistan," Renewable Energy, Elsevier, vol. 177(C), pages 953-966.
    9. Suh, Dong Hee, 2015. "Identifying Factor Substitution and Energy Intensity in the U.S. Agricultural Sector," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205264, Agricultural and Applied Economics Association.
    10. Kim, Jihyo & Heo, Eunnyeong, 2013. "Asymmetric substitutability between energy and capital: Evidence from the manufacturing sectors in 10 OECD countries," Energy Economics, Elsevier, vol. 40(C), pages 81-89.
    11. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    12. Lin, Boqiang & Xie, Chunping, 2014. "Energy substitution effect on transport industry of China-based on trans-log production function," Energy, Elsevier, vol. 67(C), pages 213-222.
    13. Halkos, George E. & Tzeremes, Nickolaos G., 2011. "Oil consumption and economic efficiency: A comparative analysis of advanced, developing and emerging economies," Ecological Economics, Elsevier, vol. 70(7), pages 1354-1362, May.
    14. Lecca, Patrizio & Swales, Kim & Turner, Karen, 2011. "An investigation of issues relating to where energy should enter the production function," Economic Modelling, Elsevier, vol. 28(6), pages 2832-2841.
    15. McKay, Lloyd & Lawrence, Denis & Vlastuin, Chris, 1980. "Input Demand and Substitution in the Australian Sheep Industry," Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 48(02), pages 1-14, August.
    16. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    17. Yazid Dissou & Reza Ghazal, 2010. "Energy Substitutability in Canadian Manufacturing Econometric Estimation with Bootstrap Confidence Intervals," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 121-148.
    18. Khayyat, Nabaz T. & Heshmati, Almas, 2014. "Production Risk, Energy Use Efficiency and Productivity of Korean Industries," IZA Discussion Papers 8081, Institute of Labor Economics (IZA).
    19. Zhu, Shu & Xu, Xin & Ren, Xiaojing & Sun, Tianhua & Oxley, Les & Rae, Allan & Ma, Hengyun, 2016. "Modeling technological bias and factor input behavior in China's wheat production sector," Economic Modelling, Elsevier, vol. 53(C), pages 245-253.
    20. Bastien Dufau, 2020. "The influence of a carbon tax on cost competitiveness," Working Papers 2005, Chaire Economie du climat.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ecorec:v:58:y:1982:i:1:p:61-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/esausea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.