IDEAS home Printed from https://ideas.repec.org/a/ayb/jrnerl/101.html
   My bibliography  Save this article

Russia-Ukraine War and Price Volatility of Global Commodities - The Role of Public Sentiments

Author

Listed:
  • Khadijat A. Azeez
  • Victor O. Hambolu
  • Andy T. Okwu
  • Bukunmi A. Agboola

    (Department of Agricultural Economics, University of Ibadan, Nigeria)

Abstract

We analysed how public sentiments have affected global commodity market volatility during the Russia-Ukraine war. Using principal component analysis, we created a sentiments index from 30 carefully selected Google trends search keywords related to the war. We tested the predictability of the sentiments index against market volatility. Our results show that while public sentiments increase commodity market volatility, incorporating the sentiment index into our predictive model significantly improves its precision.

Suggested Citation

  • Khadijat A. Azeez & Victor O. Hambolu & Andy T. Okwu & Bukunmi A. Agboola, 2024. "Russia-Ukraine War and Price Volatility of Global Commodities - The Role of Public Sentiments," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 5(2), pages 1-6.
  • Handle: RePEc:ayb:jrnerl:101
    DOI: 2024/07/10
    as

    Download full text from publisher

    File URL: https://erl.scholasticahq.com/api/v1/articles/90925-russia-ukraine-war-and-price-volatility-of-global-commodities-the-role-of-public-sentiments.pdf
    Download Restriction: no

    File URL: https://libkey.io/2024/07/10?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    2. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    3. Chen, Rongda & Bao, Weiwei & Jin, Chenglu, 2021. "Investor sentiment and predictability for volatility on energy futures Markets: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 112-129.
    4. Westerlund, Joakim & Narayan, Paresh Kumar, 2012. "Does the choice of estimator matter when forecasting returns?," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2632-2640.
    5. Smyth, Russell & Narayan, Paresh Kumar, 2018. "What do we know about oil prices and stock returns?," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 148-156.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salisu, Afees A. & Swaray, Raymond & Oloko, Tirimisiyu F., 2019. "Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables," Economic Modelling, Elsevier, vol. 76(C), pages 153-171.
    2. Salisu, Afees A. & Adekunle, Wasiu & Alimi, Wasiu A. & Emmanuel, Zachariah, 2019. "Predicting exchange rate with commodity prices: New evidence from Westerlund and Narayan (2015) estimator with structural breaks and asymmetries," Resources Policy, Elsevier, vol. 62(C), pages 33-56.
    3. Salisu, Afees A. & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil prices over 150 years: The role of tail risks," Resources Policy, Elsevier, vol. 75(C).
    4. Afees A. Salisu & Rangan Gupta & Christian Pierdzioch, 2021. "Predictability of Tail Risks of Canada and the U.S. Over a Century: The Role of Spillovers and Oil Tail Risks," Working Papers 202127, University of Pretoria, Department of Economics.
    5. Liu, Li & Tan, Siming & Wang, Yudong, 2020. "Can commodity prices forecast exchange rates?," Energy Economics, Elsevier, vol. 87(C).
    6. Sharma, Susan Sunila & Phan, Dinh Hoang Bach & Iyke, Bernard, 2019. "Do oil prices predict Indonesian macroeconomy?," Economic Modelling, Elsevier, vol. 82(C), pages 2-12.
    7. Afees A. Salisu & Raymond Swaray & Hadiza Sa'id, 2021. "Improving forecasting accuracy of the Phillips curve in OECD countries: The role of commodity prices," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2946-2975, April.
    8. Salisu, Afees A. & Ndako, Umar B. & Vo, Xuan Vinh, 2023. "Oil price and the Bitcoin market," Resources Policy, Elsevier, vol. 82(C).
    9. Afees A. Salisu & Rangan Gupta, 2021. "Commodity Prices and Forecastability of South African Stock Returns Over a Century: Sentiments versus Fundamentals," Working Papers 202144, University of Pretoria, Department of Economics.
    10. Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2023. "Tail risks and forecastability of stock returns of advanced economies: evidence from centuries of data," The European Journal of Finance, Taylor & Francis Journals, vol. 29(4), pages 466-481, March.
    11. Salisu, Afees A. & Ndako, Umar B. & Oloko, Tirimisiyu F., 2019. "Assessing the inflation hedging of gold and palladium in OECD countries," Resources Policy, Elsevier, vol. 62(C), pages 357-377.
    12. Afees A. Salisu & Abdulsalam Abidemi Sikiru, 2021. "Pandemics and the Asia-Pacific Islamic Stocks," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 1(1), pages 1-5.
    13. Isah, Kazeem O. & Raheem, Ibrahim D., 2019. "The hidden predictive power of cryptocurrencies and QE: Evidence from US stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    14. Kazeem O. Isah & Abdulkader C. Mahomedy & Elias A. Udeaja & Ojo J. Adelakun & Yusuf Yakubu & Danmecca Musa, 2022. "Revisiting the accuracy of inflation forecasts in Nigeria: The oil price–exchange rate–asymmetry perspectives," South African Journal of Economics, Economic Society of South Africa, vol. 90(3), pages 329-348, September.
    15. Afees A. Salisu & Rangan Gupta, 2023. "Oil Price Returns Skewness and Forecastability of International Stock Returns Over One Century of Data," Working Papers 202339, University of Pretoria, Department of Economics.
    16. Chiah, Mardy & Phan, Dinh Hoang Bach & Tran, Vuong Thao & Zhong, Angel, 2022. "Energy price uncertainty and the value premium," International Review of Financial Analysis, Elsevier, vol. 81(C).
    17. Salisu, Afees A. & Olaniran, Abeeb & Lasisi, Lukman, 2023. "Climate risk and gold," Resources Policy, Elsevier, vol. 82(C).
    18. Fan Zhang & Paresh Kumar Narayan & Neluka Devpura, 2021. "Has COVID-19 changed the stock return-oil price predictability pattern?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-10, December.
    19. Tule, Moses K. & Salisu, Afees A. & Chiemeke, Charles C., 2019. "Can agricultural commodity prices predict Nigeria's inflation?," Journal of Commodity Markets, Elsevier, vol. 16(C).
    20. Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).

    More about this item

    Keywords

    Public sentiments; Commodity market; Volatility; Predictability;
    All these keywords.

    JEL classification:

    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ayb:jrnerl:101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Asia-Pacific Applied Economics Association (email available below). General contact details of provider: https://edirc.repec.org/data/apaeaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.