IDEAS home Printed from https://ideas.repec.org/a/ags/afjare/333940.html
   My bibliography  Save this article

Gender-differentiated stochastic meta-frontier analysis of production technology heterogeneity among smallholder cassava farmers in Ghana

Author

Listed:
  • Missiame, Arnold
  • Irungu, Patrick
  • Nyikal, Rose Adhiambo

Abstract

This paper assesses the differences in technical efficiency of, and the cassava production systems employed by, male-managed (MMF) and female-managed (FMF) cassava farms in the Fanteakwa District of Ghana. The study employs the translog stochastic meta-frontier model to analyse data obtained from 300 randomly selected smallholder cassava farmers and finds an average meta-frontier technical efficiency (MTE) of 0.06 and 0.03 among MMF and FMF respectively. The technology gap ratios (TGR) are 0.25 and 0.04 for the MMF and FMF respectively. The results suggest that both MMFs and FMFs are technically inefficient. However, the production technology operated on MMFs is relatively superior to that operated on FMFs, as shown by the relatively higher TGR for MMFs. The results also reveal that proximity to markets, extension access, off-farm economic activities and formal education are the major contributors to the technical efficiency of the farmers.

Suggested Citation

  • Missiame, Arnold & Irungu, Patrick & Nyikal, Rose Adhiambo, 2021. "Gender-differentiated stochastic meta-frontier analysis of production technology heterogeneity among smallholder cassava farmers in Ghana," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 16(2), June.
  • Handle: RePEc:ags:afjare:333940
    DOI: 10.22004/ag.econ.333940
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/333940/files/4.-Missiame-et-al.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.333940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Koirala, Krishna H. & Mishra, Ashok K. & Sitienei, Isaac, 2015. "Farm Productivity and Technical Efficiency of Rural Malawian Households: Does Gender Make a Difference?," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196903, Southern Agricultural Economics Association.
    2. Godswill, M. & Namara, Regassa & Hagos, Fitsum & Awulachew, Seleshi Bekele & Ayana, M. & Awulachew Bossio, Deborah, 2011. "A comparative analysis of the technical efficiency of rain-fed and smallholder irrigation in Ethiopia," IWMI Working Papers H044123, International Water Management Institute.
    3. Paul Wilson & Dave Hadley & Stephen Ramsden & Ioannis Kaltsas, 1998. "Measuring and Explaining Technical Efficiency in UK Potato Production," Journal of Agricultural Economics, Wiley Blackwell, vol. 49(3), pages 294-305, September.
    4. Habtamu Alem & Gudbrand Lien & J. Brian Hardaker & Atle Guttormsen, 2019. "Regional differences in technical efficiency and technological gap of Norwegian dairy farms: a stochastic meta-frontier model," Applied Economics, Taylor & Francis Journals, vol. 51(4), pages 409-421, January.
    5. John K M & Wayo Seini, 2013. "Technical Efficiency Analysis of Maize Farmers in the Eastern Region of Ghana," Journal of Social and Development Sciences, AMH International, vol. 4(2), pages 84-99.
    6. Víctor Moreira & Boris Bravo-Ureta, 2010. "Technical efficiency and metatechnology ratios for dairy farms in three southern cone countries: a stochastic meta-frontier model," Journal of Productivity Analysis, Springer, vol. 33(1), pages 33-45, February.
    7. Musa, H. Ahmed & Lemma, Z. & Endrias, G., 2015. "Measuring Technical, Economic and Allocative Efficiency of Maize Production in Subsistence Farming: Evidence from the Central Rift Valley of Ethiopia," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 9(3), pages 1-12, December.
    8. Musa Hasen Ahmed & Kumilachew Alamerie Melesse, 2018. "Impact of off-farm activities on technical efficiency: evidence from maize producers of eastern Ethiopia," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 6(1), pages 1-15, December.
    9. Yujiro Hayami, 1969. "Sources of Agricultural Productivity Gap Among Selected Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 51(3), pages 564-575.
    10. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    11. Johannes Sauer & Klaus Frohberg & Heinrich Hockmann, 2006. "Stochastic Efficiency Measurement: The Curse of Theoretical Consistency," Journal of Applied Economics, Taylor & Francis Journals, vol. 9(1), pages 139-165, May.
    12. Johannes Sauer & Klaus Frohberg & Henrich Hockmann, 2006. "Stochastic efficiency measurement: The curse of theoretical consistency," Journal of Applied Economics, Universidad del CEMA, vol. 9, pages 139-166, May.
    13. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    14. Otieno, David Jakinda & Hubbard, Lionel J. & Ruto, Eric, 2011. "Technical efficiency and technology gaps in beef cattle production systems in Kenya: A stochastic metafrontier analysis," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108947, Agricultural Economics Society.
    15. Cliff Huang & Tai-Hsin Huang & Nan-Hung Liu, 2014. "A new approach to estimating the metafrontier production function based on a stochastic frontier framework," Journal of Productivity Analysis, Springer, vol. 42(3), pages 241-254, December.
    16. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owusu, Eric S. & Bravo-Ureta, Boris E., 2022. "Reap when you sow? The productivity impacts of early sowing in Malawi," Agricultural Systems, Elsevier, vol. 199(C).
    2. Kumar, Surender & Jain, Rakesh Kumar, 2019. "Carbon-sensitive meta-productivity growth and technological gap: An empirical analysis of Indian thermal power sector," Energy Economics, Elsevier, vol. 81(C), pages 104-116.
    3. Nan Jiang & Basil Sharp, 2015. "Technical efficiency and technological gap of New Zealand dairy farms: a stochastic meta-frontier model," Journal of Productivity Analysis, Springer, vol. 44(1), pages 39-49, August.
    4. Owusu, Rebecca & Kwadzo, Moses & Ghartey, William, 2022. "Regional Productivity Differential and Technology Gap In African Agriculture: A Stochastic Metafrontier Approach," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 10(1), January.
    5. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Lau, Sim-Yee, 2017. "Have regulatory reforms improved the efficiency levels of the Japanese electricity distribution sector? A cost metafrontier-based analysis," Energy Policy, Elsevier, vol. 108(C), pages 606-616.
    6. Abebayehu Girma Geffersa & Frank Wogbe Agbola & Amir Mahmood, 2022. "Modelling technical efficiency and technology gap in smallholder maize sector in Ethiopia: accounting for farm heterogeneity," Applied Economics, Taylor & Francis Journals, vol. 54(5), pages 506-521, January.
    7. Khanal, Uttam & Wilson, Clevo & Shankar, Sriram & Hoang, Viet-Ngu & Lee, Boon, 2018. "Farm performance analysis: Technical efficiencies and technology gaps of Nepalese farmers in different agro-ecological regions," Land Use Policy, Elsevier, vol. 76(C), pages 645-653.
    8. Fang, Guozhu & Zhang, Xiaoheng & Qi, Chunjie, 2021. "Are Integrated Crop-Livestock Systems More Technical Efficiency? Evidence from Small Farmers in China," 2021 Conference, August 17-31, 2021, Virtual 315129, International Association of Agricultural Economists.
    9. Mohamed Chaffai & M. Kabir Hassan, 2019. "Technology Gap and Managerial Efficiency: A Comparison between Islamic and Conventional Banks in MENA," Journal of Productivity Analysis, Springer, vol. 51(1), pages 39-53, February.
    10. Laure Latruffe & Andreas Niedermayr & Yann Desjeux & K Herve Dakpo & Kassoum Ayouba & Lena Schaller & Jochen Kantelhardt & Yan Jin & Kevin Kilcline & Mary Ryan & Cathal O’Donoghue, 2023. "Identifying and assessing intensive and extensive technologies in European dairy farming," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1482-1519.
    11. Thanh Pham Thien Nguyen & Son Hong Nghiem & Eduardo Roca & Parmendra Sharma, 2016. "Efficiency, innovation and competition: evidence from Vietnam, China and India," Empirical Economics, Springer, vol. 51(3), pages 1235-1259, November.
    12. Tai-Hsin Huang & Yi-Chun Lin & Kuo-Jui Huang & Yu-Wei Liao, 2022. "Comparing Cost Efficiency Between Financial and Non-financial Holding Banks and Insurers in Taiwan Under the Framework of Copula Methods and Metafrontier," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(4), pages 735-766, December.
    13. Phuc Trong Ho & Pham Xuan Hung & Nguyen Duc Tien, 2023. "Effects of varieties and seasons on cost efficiency in rice farming: A stochastic metafrontier approach," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society, vol. 13(2), pages 120-129.
    14. Chukwujekwu A. Obianefo & John N. Ng’ombe & Agness Mzyece & Blessing Masasi & Ngozi J. Obiekwe & Oluchi O. Anumudu, 2021. "Technical Efficiency and Technological Gaps of Rice Production in Anambra State, Nigeria," Agriculture, MDPI, vol. 11(12), pages 1-13, December.
    15. Gatti, Nicolas & Lema, Daniel & Brescia, Victor, 2015. "A Meta-Frontier Approach to Measuring Technical Efficiency and Technology Gaps in Beef Cattle Production in Argentina," 2015 Conference, August 9-14, 2015, Milan, Italy 211647, International Association of Agricultural Economists.
    16. Juan Cabas Monje & Bouali Guesmi & Amer Ait Sidhoum & José María Gil, 2023. "Measuring technical efficiency of Spanish pig farming: Quantile stochastic frontier approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(4), pages 688-703, October.
    17. Zarkovic, Maja, 2020. "Cap-and-trade and produce at least cost? Investigating firm behaviour in the EU ETS," Working papers 2020/12, Faculty of Business and Economics - University of Basel.
    18. Bao-Guang Chang & Tai-Hsin Huang & Chun-Yi Kuo, 2015. "A comparison of the technical efficiency of accounting firms among the US, China, and Taiwan under the framework of a stochastic metafrontier production function," Journal of Productivity Analysis, Springer, vol. 44(3), pages 337-349, December.
    19. Tanko, Mohammed & Ismaila, Salifu, 2021. "How culture and religion influence the agriculture technology gap in Northern Ghana," World Development Perspectives, Elsevier, vol. 22(C).
    20. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.

    More about this item

    Keywords

    Labor and Human Capital;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:afjare:333940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaaeaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.