Advanced Search
MyIDEAS: Login to save this paper or follow this series

Empirical measurement of credit rationing in agriculture: a methodological survey


Author Info

  • Petrick, Martin


Empirical analysis of rural credit market failure has been of key scientific and political interest in recent years. The aim of this paper is to give an overview of various methods for measuring credit rationing of farms employed in the literature. Furthermore, based on a common analytical framework entailing a formal model of a credit rationed farm household, the methods are subjected to a comparative evaluation of their specific strengths or shortcomings. Six approaches are distinguished: measurement of loan transaction costs, analysis of qualitative information collected in interviews, analysis of quantitative information collected in interviews by using the credit limit concept, analysis of spill-over effects with regard to secondary credit sources, econometric household modelling, and the econometric analysis of dynamic investment decisions. The first approach defines credit rationing as the impossibility to take a loan due to prohibitively high, measurable transaction costs on loan markets, which is a price rationing mechanism. All other approaches at least implicitly define credit rationing as a persistent private excess demand in terms of a quantity restriction. The six approaches are more or less closely linked to the neo-classical efficiency concept. An explicit comparison with a first-best solution is impossible in the first three approaches, since they essentially rely on a subjective assessment of borrowers’ access to credit, based on qualitative or quantitative indicators. The fifth and sixth approach allow a rigorous interpretation in the framework of neo-classical equilibrium theory. The fourth approach takes an intermediate position, since spill-over on segmented loan markets reveals a willingness to pay with regard to the supposedly less expensive but rationed primary source. Approaches are fairly data demanding in general, usually requiring specific data on loan transactions. Even so, most approaches are applicable to cross-sectional household data. Only dynamic modelling of investment decisions necessitates the availability of panel data, therefore restricting the applicability in low-income and transition countries. With the exception of the first, all methods surveyed might plausibly be used to empirically detect credit rationing. -- G E R M A N V E R S I O N: Die empirische Analyse von Marktversagen auf ländlichen Kreditmärkten ist in den vergangenen Jahren von hohem wissenschaftlichen und politischen Interesse gewesen. Ziel dieses Beitrags ist es, einen Überblick über verschiedene in der Literatur angewandte Methoden zur Messung von Kreditrationierung zu geben. Auf der Grundlage eines gemeinsamen analytischen Bezugsrahmens werden die Methoden darüber hinaus einer vergleichenden Bewertung im Hinblick auf ihre Stärken und Schwächen unterzogen. Es werden sechs Vorgehensweisen unterschieden: die Messung von Kredittransaktionskosten, die Analyse von in Interviews gewonnenen qualitativen Informationen, die Analyse von in Interviews erhobenen quantitativen Information unter Rückgriff auf das Konzept des credit limits, die Analyse von Überschusseffekten im Hinblick auf sekundäre Kreditquellen, ökonometrische Haushaltsmodellierung sowie die ökonometrische Analyse von dynamischen Investitionsentscheidungen. Die erste Vorgehensweise versteht unter Kreditrationierung die Unmöglichkeit, einen Kredit zu erhalten aufgrund von prohibitiv hohen, messbaren Transaktionskosten auf Kreditmärkten. Es handelt sich hierbei um einen Mechanismus der Preisrationierung. Alle anderen Vorgehensweisen definieren Kreditrationierung zumindest implizit als andauernde Überschussnachfrage, folglich eine Mengenbeschränkung. Die sechs Vorgehensweisen sind mehr oder weniger eng mit dem neoklassischen Effizienzkonzept verbunden. Ein expliziter Vergleich mit einer first-best Lösung ist in den ersten drei Vorgehensweisen jedoch unmöglich, da sie auf einer subjektiven Einschätzung des Kreditzugangs beruhen. Die fünfte und sechste Methode erlauben hingegen eine strikte Interpretation im Rahmen der neoklassischen Gleichgewichtstheorie. Die vierte Vorgehensweise nimmt eine Zwischenstellung ein, da Überschusseffekte auf segmentierten Kreditmärkten eine Zahlungsbereitschaft im Hinblick auf die primäre, rationierte Kreditquelle implizieren. Die Methoden erfordern die Verfügbarkeit von geeigneten Datensätzen über Kredittransaktionen. Die meisten Ansätze können allerdings auf Querschnittsdaten angewendet werden. Lediglich die dynamische Modellierung von Investitionsentscheidungen erfordert Paneldaten und beschränkt daher die Einsatzmöglichkeit in Entwicklungs- und Transformationsländern. Mit Ausnahme des ersten können alle Ansätze auf plausible Weise für die empirische Untersuchung von Kreditrationierung eingesetzt werden.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: no

Bibliographic Info

Paper provided by Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO) in its series IAMO Discussion Papers with number 45.

as in new window
Date of creation: 2003
Date of revision:
Handle: RePEc:zbw:iamodp:14926

Contact details of provider:
Postal: Theodor-Lieser-Strasse 2, 06120 Halle(Saale)
Phone: (+49) (0) 345 / 29 28 0
Fax: (+49) (0) 345 / 29 28 199
Web page:
More information through EDIRC

Related research

Keywords: agricultural finance; credit rationing; quantitative analysis; micro-econometrics; Agrarfinanzierung; Kreditrationierung; quantitative Analyse; Mikroökonometrie;

Other versions of this item:

Find related papers by JEL classification:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. de Meza, David & Webb, David C, 1987. "Too Much Investment: A Problem of Asymmetric Information," The Quarterly Journal of Economics, MIT Press, vol. 102(2), pages 281-92, May.
  2. de Meza, David & Webb, David, 2000. "Does credit rationing imply insufficient lending?," Journal of Public Economics, Elsevier, vol. 78(3), pages 215-234, November.
Full references (including those not matched with items on IDEAS)


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:zbw:iamodp:14926. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.