IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v68y2018icp46-55.html
   My bibliography  Save this article

Emergence of cooperation and a fair system optimum in road networks: A game-theoretic and agent-based modelling approach

Author

Listed:
  • Levy, Nadav
  • Klein, Ido
  • Ben-Elia, Eran

Abstract

Cooperation is an emergent social state related to the dynamics and complexity of road traffic and is reinforced through adaptive learning. Game theory and research in behavioural economics provide ample evidence that cooperation can efficiently solve social dilemmas similar to traffic congestion in dynamic settings. Traffic theory, asserts User Equilibrium, is both a stable and equitable, albeit inefficient, network state, which is a behavioural outcome of the selfish uncoordinated decision of drivers. In contrast, the System Optimum is an efficient network state that minimizes the total travel costs but is hard to maintain due to the inherent cost inequalities drivers will incur. In this paper, we describe how the principles of game-theory in a simple 2-player game allow the emergence of a stable system optimum through cooperation. We then investigate what happens in n-player games by applying an agent-based route-choice model. The model shows how reinforced learning and different behavioural specifications regarding agents’ cognition – selfish or cooperative - brings a simple road network from User Equilibrium towards the system optimum while preserving sufficient equity amongst drivers. The results suggest that a sufficient number of route alternations between drivers and a certain degree of altruism allow for a self-organizing formation of a fairness equilibrium that can maintain the network in the system optimum. The implications of future congestion management strategies that can be implemented with information and communication technologies are discussed.

Suggested Citation

  • Levy, Nadav & Klein, Ido & Ben-Elia, Eran, 2018. "Emergence of cooperation and a fair system optimum in road networks: A game-theoretic and agent-based modelling approach," Research in Transportation Economics, Elsevier, vol. 68(C), pages 46-55.
  • Handle: RePEc:eee:retrec:v:68:y:2018:i:c:p:46-55
    DOI: 10.1016/j.retrec.2017.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S073988591630018X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2017.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abou-Zeid, Maya & Ben-Akiva, Moshe, 2011. "The effect of social comparisons on commute well-being," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 345-361, May.
    2. Daniel L. McFadden, 2013. "The New Science of Pleasure," NBER Working Papers 18687, National Bureau of Economic Research, Inc.
    3. James W. Friedman, 1971. "A Non-cooperative Equilibrium for Supergames," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 38(1), pages 1-12.
    4. Ido Erev & Eyal Ert & Alvin E. Roth, 2010. "Erev, I. et al . A Choice Prediction Competition for Market Entry Games: An Introduction. Games 2010, 1 , 117-136," Games, MDPI, vol. 1(3), pages 1-5, July.
    5. Ben-Elia, Eran & Shiftan, Yoram, 2010. "Which road do I take? A learning-based model of route-choice behavior with real-time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 249-264, May.
    6. Fischbacher, Urs & Gachter, Simon & Fehr, Ernst, 2001. "Are people conditionally cooperative? Evidence from a public goods experiment," Economics Letters, Elsevier, vol. 71(3), pages 397-404, June.
    7. Anthony Ziegelmeyer & Frédéric Koessler & Kene Boun My & Laurent Denant-Boèmont, 2008. "Road Traffic Congestion and Public Information: An Experimental Investigation," Journal of Transport Economics and Policy, University of Bath, vol. 42(1), pages 43-82, January.
    8. Ernst Fehr & Klaus M. Schmidt, 1999. "A Theory of Fairness, Competition, and Cooperation," The Quarterly Journal of Economics, Oxford University Press, vol. 114(3), pages 817-868.
    9. Axel Ockenfels & Gary E. Bolton, 2000. "ERC: A Theory of Equity, Reciprocity, and Competition," American Economic Review, American Economic Association, vol. 90(1), pages 166-193, March.
    10. Davies, Nick, 2012. "What are the ingredients of successful travel behavioural change campaigns?," Transport Policy, Elsevier, vol. 24(C), pages 19-29.
    11. Lindsey, Robin & Daniel, Terry & Gisches, Eyran & Rapoport, Amnon, 2014. "Pre-trip information and route-choice decisions with stochastic travel conditions: Theory," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 187-207.
    12. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    13. Ben-Elia, Eran & Ettema, Dick, 2011. "Rewarding rush-hour avoidance: A study of commuters' travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 567-582, August.
    14. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    15. Viegas, José M., 2001. "Making urban road pricing acceptable and effective: searching for quality and equity in urban mobility," Transport Policy, Elsevier, vol. 8(4), pages 289-294, October.
    16. Rouwendal, Jan & Verhoef, Erik T., 2006. "Basic economic principles of road pricing: From theory to applications," Transport Policy, Elsevier, vol. 13(2), pages 106-114, March.
    17. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    18. Kemel, Emmanuel & Paraschiv, Corina, 2013. "Prospect Theory for joint time and money consequences in risk and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 81-95.
    19. Xuan Lu & Song Gao & Eran Ben-Elia & Ryan Pothering, 2014. "Travelers' Day-to-Day Route Choice Behavior with Real-Time Information in a Congested Risky Network," Mathematical Population Studies, Taylor & Francis Journals, vol. 21(4), pages 205-219, December.
    20. Olaf Jahn & Rolf H. Möhring & Andreas S. Schulz & Nicolás E. Stier-Moses, 2005. "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion," Operations Research, INFORMS, vol. 53(4), pages 600-616, August.
    21. Angelelli, E. & Arsik, I. & Morandi, V. & Savelsbergh, M. & Speranza, M.G., 2016. "Proactive route guidance to avoid congestion," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 1-21.
    22. Watling, David, 1999. "Stability of the stochastic equilibrium assignment problem: a dynamical systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 281-312, May.
    23. Dirk Helbing & Martin Schönhof & Hans-Ulrich Stark & Janusz A. Hołyst, 2005. "How Individuals Learn To Take Turns: Emergence Of Alternating Cooperation In A Congestion Game And The Prisoner'S Dilemma," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 87-116.
    24. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    25. Rey, David & Dixit, Vinayak V. & Ygnace, Jean-Luc & Waller, S. Travis, 2016. "An endogenous lottery-based incentive mechanism to promote off-peak usage in congested transit systems," Transport Policy, Elsevier, vol. 46(C), pages 46-55.
    26. Jim Engle-Warnick & Robert Slonim, 2006. "Inferring repeated-game strategies from actions: evidence from trust game experiments," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(3), pages 603-632, August.
    27. Martin Shubik, 1970. "Game theory, behavior, and the paradox of the Prisoner's Dilemma: three solutions," Journal of Conflict Resolution, Peace Science Society (International), vol. 14(2), pages 181-193, June.
    28. David Levinson, 2003. "The Value of Advanced Traveler Information Systems for Route Choice," Working Papers 200307, University of Minnesota: Nexus Research Group.
    29. Rabin, Matthew, 1993. "Incorporating Fairness into Game Theory and Economics," American Economic Review, American Economic Association, vol. 83(5), pages 1281-1302, December.
    30. Steg, Linda, 2005. "Car use: lust and must. Instrumental, symbolic and affective motives for car use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 147-162.
    31. Chidambaram, Bhuvanachithra & Janssen, Marco A. & Rommel, Jens & Zikos, Dimitrios, 2014. "Commuters’ mode choice as a coordination problem: A framed field experiment on traffic policy in Hyderabad, India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 9-22.
    32. Rapoport, Amnon & Mak, Vincent & Zwick, Rami, 2006. "Navigating congested networks with variable demand: Experimental evidence," Journal of Economic Psychology, Elsevier, vol. 27(5), pages 648-666, October.
    33. Rapoport, Amnon & Kugler, Tamar & Dugar, Subhasish & Gisches, Eyran J., 2009. "Choice of routes in congested traffic networks: Experimental tests of the Braess Paradox," Games and Economic Behavior, Elsevier, vol. 65(2), pages 538-571, March.
    34. Horowitz, Joel L., 1984. "The stability of stochastic equilibrium in a two-link transportation network," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 13-28, February.
    35. Eran Ben-Elia & Erel Avineri, 2015. "Response to Travel Information: A Behavioural Review," Transport Reviews, Taylor & Francis Journals, vol. 35(3), pages 352-377, May.
    36. Selten, R. & Chmura, T. & Pitz, T. & Kube, S. & Schreckenberg, M., 2007. "Commuters route choice behaviour," Games and Economic Behavior, Elsevier, vol. 58(2), pages 394-406, February.
    37. Andreoni, James, 1990. "Impure Altruism and Donations to Public Goods: A Theory of Warm-Glow Giving?," Economic Journal, Royal Economic Society, vol. 100(401), pages 464-477, June.
    38. Handy, Susan & Weston, Lisa & Mokhtarian, Patricia L., 2005. "Driving by choice or necessity?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 183-203.
    39. Hai Yang, 1999. "System Optimum, Stochastic User Equilibrium, and Optimal Link Tolls," Transportation Science, INFORMS, vol. 33(4), pages 354-360, November.
    40. Ido Erev & Eyal Ert & Alvin E. Roth, 2010. "A Choice Prediction Competition for Market Entry Games: An Introduction," Games, MDPI, vol. 1(2), pages 1-20, May.
    41. Eran Ben-Elia & Ido Erev & Yoram Shiftan, 2008. "The combined effect of information and experience on drivers’ route-choice behavior," Transportation, Springer, vol. 35(2), pages 165-177, March.
    42. Innocenti, Alessandro & Lattarulo, Patrizia & Pazienza, Maria Grazia, 2013. "Car stickiness: Heuristics and biases in travel choice," Transport Policy, Elsevier, vol. 25(C), pages 158-168.
    43. Rapoport, Amnon & Gisches, Eyran J. & Daniel, Terry & Lindsey, Robin, 2014. "Pre-trip information and route-choice decisions with stochastic travel conditions: Experiment," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 154-172.
    44. Tillema, Taede & Ben-Elia, Eran & Ettema, Dick & van Delden, Janet, 2013. "Charging versus rewarding: A comparison of road-pricing and rewarding peak avoidance in the Netherlands," Transport Policy, Elsevier, vol. 26(C), pages 4-14.
    45. Feinberg, Robert M & Husted, Thomas A, 1993. "An Experimental Test of Discount-Rate Effects on Collusive Behaviour in Duopoly Markets," Journal of Industrial Economics, Wiley Blackwell, vol. 41(2), pages 153-160, June.
    46. Yang, Hai & Huang, Hai-Jun, 2004. "The multi-class, multi-criteria traffic network equilibrium and systems optimum problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koller, Florian, 2021. "What determines the acceptance of socially optimal traffic coordination?: A scenario-based examination in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 62-75.
    2. Sun, Qipeng & Cheng, Qianqian & Wang, Yongjie & Li, Tao & Ma, Fei & Yao, Zhigang, 2022. "Zip-merging behavior at Y-intersection based on intelligent travel points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    3. Wang, Yongjie & Shen, Binchang & Wu, Hao & Wang, Chao & Su, Qian & Chen, Wenqiang, 2021. "Modeling illegal pedestrian crossing behaviors at unmarked mid-block roadway based on extended decision field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    4. Wang, Yongjie & Yao, Zhouzhou & Wang, Chao & Ren, Jiale & Chen, Qiao, 2020. "The impact of intelligent transportation points system based on Elo rating on emergence of cooperation at Y intersection," Applied Mathematics and Computation, Elsevier, vol. 370(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Xiaoyan & Han, Xiao & Bao, Jian-Zhang & Jiang, Rui & Jia, Bin & Yan, Xiaoyong & Zhang, Boyu & Wang, Wen-Xu & Gao, Zi-You, 2017. "Decision dynamics of departure times: Experiments and modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 74-82.
    2. Kasun P Wijayaratna & Vinayak V Dixit & Laurent Denant-Boemont & S Travis Waller, 2017. "An experimental study of the Online Information Paradox: Does en-route information improve road network performance?," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-17, September.
    3. Meneguzzer, Claudio, 2022. "Day-to-day dynamics in a simple traffic network with mixed direct and contrarian route choice behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    4. Xiao Han & Yun Yu & Bin Jia & Zi‐You Gao & Rui Jiang & H. Michael Zhang, 2021. "Coordination Behavior in Mode Choice: Laboratory Study of Equilibrium Transformation and Selection," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3635-3656, October.
    5. Ben-Elia, Eran & Ettema, Dick, 2011. "Rewarding rush-hour avoidance: A study of commuters' travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 567-582, August.
    6. Bodo Sturm & Joachim Weimann, 2006. "Experiments in Environmental Economics and Some Close Relatives," Journal of Economic Surveys, Wiley Blackwell, vol. 20(3), pages 419-457, July.
    7. Jacobs Martin, 2016. "Accounting for Changing Tastes: Approaches to Explaining Unstable Individual Preferences," Review of Economics, De Gruyter, vol. 67(2), pages 121-183, August.
    8. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    9. Rey, David & Dixit, Vinayak V. & Ygnace, Jean-Luc & Waller, S. Travis, 2016. "An endogenous lottery-based incentive mechanism to promote off-peak usage in congested transit systems," Transport Policy, Elsevier, vol. 46(C), pages 46-55.
    10. Redzo Mujcic & Andreas Leibbrandt, 2018. "Indirect Reciprocity and Prosocial Behaviour: Evidence from a Natural Field Experiment," Economic Journal, Royal Economic Society, vol. 128(611), pages 1683-1699, June.
    11. Tang, Yue & Gao, Song & Ben-Elia, Eran, 2017. "An exploratory study of instance-based learning for route choice with random travel times," Journal of choice modelling, Elsevier, vol. 24(C), pages 22-35.
    12. Han, Xiao & Yu, Yun & Gao, Zi-You & Zhang, H. Michael, 2021. "The value of pre-trip information on departure time and route choice in the morning commute under stochastic traffic conditions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 205-226.
    13. Terry E. Daniel & Eyran J. Gisches & Amnon Rapoport, 2009. "Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks," American Economic Review, American Economic Association, vol. 99(5), pages 2149-2176, December.
    14. Thorsten Chmura & Christoph Engel & Markus Englerth, 2013. "Selfishness As a Potential Cause of Crime. A Prison Experiment," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2013_05, Max Planck Institute for Research on Collective Goods.
    15. Boosey, Luke A., 2017. "Conditional cooperation in network public goods experiments," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 69(C), pages 108-116.
    16. Chan, Kenneth S. & Godby, Rob & Mestelman, Stuart & Andrew Muller, R., 2002. "Crowding-out voluntary contributions to public goods," Journal of Economic Behavior & Organization, Elsevier, vol. 48(3), pages 305-317, July.
    17. Bogliacino, Francesco & Codagnone, Cristiano, 2021. "Microfoundations, behaviour, and evolution: Evidence from experiments," Structural Change and Economic Dynamics, Elsevier, vol. 56(C), pages 372-385.
    18. Anya Savikhin Samek & Roman Sheremeta, 2014. "Recognizing contributors: an experiment on public goods," Experimental Economics, Springer;Economic Science Association, vol. 17(4), pages 673-690, December.
    19. Gebhard Kirchgässner, 2014. "On Self-Interest and Greed," CREMA Working Paper Series 2014-12, Center for Research in Economics, Management and the Arts (CREMA).
    20. Kurt A. Ackermann & Ryan O. Murphy, 2019. "Explaining Cooperative Behavior in Public Goods Games: How Preferences and Beliefs Affect Contribution Levels," Games, MDPI, vol. 10(1), pages 1-34, March.

    More about this item

    Keywords

    Cooperation; Congestion; Game theory; Agent-based model; Route-choice; Fairness equilibrium; Altruism;
    All these keywords.

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:68:y:2018:i:c:p:46-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.