IDEAS home Printed from https://ideas.repec.org/a/eee/chieco/v60y2020ics1043951x20300201.html
   My bibliography  Save this article

Agricultural productivity convergence in China

Author

Listed:
  • Gong, Binlei

Abstract

This article investigates the progress and prospects of agricultural productivity catch-up in China since the rural reform. A model averaging method is employed to jointly consider four productivity estimates, which can better capture the province-specific and non-linear trend of productivity that was estimated with bias in previous literature. This article then utilizes three convergence tests to evaluate whether convergence has occurred and explores channels through which agricultural convergence can be achieved or accelerated. Using three panels at the province, county and commodity levels, this article concludes that agriculture is not on the right track to catch-up, since 23 out of 28 provinces and 19 out of 23 farm commodities fail to converge. However, the productivity gap may diminish in the future if the irrigation, education, public expenditure and structural transformation for lagging provinces can be improved.

Suggested Citation

  • Gong, Binlei, 2020. "Agricultural productivity convergence in China," China Economic Review, Elsevier, vol. 60(C).
  • Handle: RePEc:eee:chieco:v:60:y:2020:i:c:s1043951x20300201
    DOI: 10.1016/j.chieco.2020.101423
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1043951X20300201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chieco.2020.101423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan McCunn & Wallace E. Huffman, 2000. "Convergence in U.S. Productivity Growth for Agriculture: Implications of Interstate Research Spillovers for Funding Agricultural Research," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(2), pages 370-388.
    2. Vernon W. Ruttan, 2002. "Productivity Growth in World Agriculture: Sources and Constraints," Journal of Economic Perspectives, American Economic Association, vol. 16(4), pages 161-184, Fall.
    3. Carter, Colin A. & Estrin, Andrew J., 2001. "Market Reforms Versus Structural Reforms in Rural China," Journal of Comparative Economics, Elsevier, vol. 29(3), pages 527-541, September.
    4. Fan, Shenggen & Zhang, Linxiu & Zhang, Xiaobo, 2004. "Reforms, Investment, and Poverty in Rural China," Economic Development and Cultural Change, University of Chicago Press, vol. 52(2), pages 395-421, January.
    5. Sala-i-Martin, Xavier X., 1996. "Regional cohesion: Evidence and theories of regional growth and convergence," European Economic Review, Elsevier, vol. 40(6), pages 1325-1352, June.
    6. Shunxiang Wu & David Walker & Stephen Devadoss & Yao‐chi Lu, 2001. "Productivity Growth and its Components in Chinese Agriculture after Reforms," Review of Development Economics, Wiley Blackwell, vol. 5(3), pages 375-391, October.
    7. Xiaohua Yu, 2012. "Productivity, efficiency and structural problems in Chinese dairy farms," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 4(2), pages 168-175, May.
    8. David K. Lambert & Elliott Parker, 1998. "Productivity in Chinese Provincial Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 49(3), pages 378-392, September.
    9. Ma, Shuzhong & Feng, Han, 2013. "Will the decline of efficiency in China's agriculture come to an end? An analysis based on opening and convergence," China Economic Review, Elsevier, vol. 27(C), pages 179-190.
    10. Ertugrul Deliktas & Mehmet Balcilar, 2005. "A Comparative Analysis of Productivity Growth, Catch-Up, and Convergence in Transition Economies," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 41(1), pages 6-28, January.
    11. Mastromarco, Camilla & Zago, Angelo, 2012. "On modeling the determinants of TFP growth," Structural Change and Economic Dynamics, Elsevier, vol. 23(4), pages 373-382.
    12. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    13. Songqing Jin & Jikun Huang & Ruifa Hu & Scott Rozelle, 2002. "The Creation and Spread of Technology and Total Factor Productivity in China's Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(4), pages 916-930.
    14. Tim J. Coelli & D. S. Prasada Rao, 2005. "Total factor productivity growth in agriculture: a Malmquist index analysis of 93 countries, 1980–2000," Agricultural Economics, International Association of Agricultural Economists, vol. 32(s1), pages 115-134, January.
    15. Mao, Weining & Koo, Won W., 1997. "Productivity growth, technological progress, and efficiency change in chinese agriculture after rural economic reforms: A DEA approach," China Economic Review, Elsevier, vol. 8(2), pages 157-174.
    16. Xiang, C. & Huang, J., 2018. "The Roles of Exotic Wheat Germplasms in Wheat Breeding and Their Impacts on Wheat Production in China," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277017, International Association of Agricultural Economists.
    17. Madsen, Jakob B., 2007. "Technology spillover through trade and TFP convergence: 135 years of evidence for the OECD countries," Journal of International Economics, Elsevier, vol. 72(2), pages 464-480, July.
    18. Shenggen Fan, 1991. "Effects of Technological Change and Institutional Reform on Production Growth in Chinese Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(2), pages 266-275.
    19. Gong, Binlei, 2018. "Interstate competition in agriculture: Cheer or fear? Evidence from the United States and China," Food Policy, Elsevier, vol. 81(C), pages 37-47.
    20. Andrew T. Young & Matthew J. Higgins & Daniel Levy, 2008. "Sigma Convergence versus Beta Convergence: Evidence from U.S. County‐Level Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(5), pages 1083-1093, August.
    21. Brummer, B. & Glauben, T. & Lu, W., 2006. "Policy reform and productivity change in Chinese agriculture: A distance function approach," Journal of Development Economics, Elsevier, vol. 81(1), pages 61-79, October.
    22. Xiang, Cheng & Huang, Jikun, 2020. "The role of exotic wheat germplasms in wheat breeding and their impact on wheat yield and production in China," China Economic Review, Elsevier, vol. 62(C).
    23. McMillan, John & Whalley, John & Zhu, Lijing, 1989. "The Impact of China's Economic Reforms on Agricultural Productivity Growth," Journal of Political Economy, University of Chicago Press, vol. 97(4), pages 781-807, August.
    24. Huang, Jikun & Rozelle, Scott, 1996. "Technological change: Rediscovering the engine of productivity growth in China's rural economy," Journal of Development Economics, Elsevier, vol. 49(2), pages 337-369, May.
    25. Subal C. Kumbhakar & Efthymios G. Tsionas, 2011. "Stochastic error specification in primal and dual production systems," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(2), pages 270-297, March.
    26. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    27. Inklaar, Robert & Diewert, W. Erwin, 2016. "Measuring industry productivity and cross-country convergence," Journal of Econometrics, Elsevier, vol. 191(2), pages 426-433.
    28. Wu, Yanrui, 2000. "Is China's economic growth sustainable? A productivity analysis," China Economic Review, Elsevier, vol. 11(3), pages 278-296.
    29. Wang, Hung-Jen & Ho, Chia-Wen, 2010. "Estimating fixed-effect panel stochastic frontier models by model transformation," Journal of Econometrics, Elsevier, vol. 157(2), pages 286-296, August.
    30. Xiaobing Wang & Futoshi Yamauchi & Jikun Huang, 2016. "Rising wages, mechanization, and the substitution between capital and labor: evidence from small scale farm system in China," Agricultural Economics, International Association of Agricultural Economists, vol. 47(3), pages 309-317, May.
    31. Xiao-Yuan Dong, 2000. "Public investment, social services and productivity of Chinese household farms," Journal of Development Studies, Taylor & Francis Journals, vol. 36(3), pages 100-122.
    32. Wang, Sun Ling & Huang, Jikun & Wang, Xiaobing & Tuan, Francis, 2019. "Are China’s regional agricultural productivities converging: How and why?," Food Policy, Elsevier, vol. 86(C), pages 1-1.
    33. Weiming Tian & Guang Wan, 2000. "Technical Efficiency and Its Determinants in China's Grain Production," Journal of Productivity Analysis, Springer, vol. 13(2), pages 159-174, March.
    34. Tong, Haizhi & Fulginiti, Lilyan E. & Sesmero, Juan P., 2009. "Chinese Regional Agricultural Productivity: 1994-2005," 2009 Conference, August 16-22, 2009, Beijing, China 51784, International Association of Agricultural Economists.
    35. Kneip, Alois & Sickles, Robin C. & Song, Wonho, 2012. "A New Panel Data Treatment For Heterogeneity In Time Trends," Econometric Theory, Cambridge University Press, vol. 28(3), pages 590-628, June.
    36. K.P. Kalirajan & M.B. Obwona & S. Zhao, 1996. "A Decomposition of Total Factor Productivity Growth: The Case of Chinese Agricultural Growth before and after Reforms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 331-338.
    37. Alejandro Nin Pratt & Bingxin Yu & Shenggen Fan, 2008. "The total factor productivity in China and India: new measures and approaches," China Agricultural Economic Review, Emerald Group Publishing, vol. 1(1), pages 9-22, September.
    38. Robert Dekle & Guillaume Vandenbroucke, 2010. "Whither Chinese Growth? A Sectoral Growth Accounting Approach," Review of Development Economics, Wiley Blackwell, vol. 14(s1), pages 487-498, August.
    39. Kumbhakar, Subal C. & Wang, Hung-Jen, 2005. "Estimation of growth convergence using a stochastic production frontier approach," Economics Letters, Elsevier, vol. 88(3), pages 300-305, September.
    40. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    41. Mourao, Paulo Reis, 2018. "What is China seeking from Africa? An analysis of the economic and political determinants of Chinese Outward Foreign Direct Investment based on Stochastic Frontier Models," China Economic Review, Elsevier, vol. 48(C), pages 258-268.
    42. Justin Yifu Lin, 1994. "Impact of hybrid rice on input demand and productivity," Agricultural Economics, International Association of Agricultural Economists, vol. 10(2), pages 153-164, April.
    43. Chen, Zhuo & Huffman, Wallace E. & Rozelle, Scott, 2009. "Farm technology and technical efficiency: Evidence from four regions in China," China Economic Review, Elsevier, vol. 20(2), pages 153-161, June.
    44. Jin, Songqing & Deininger, Klaus, 2009. "Land rental markets in the process of rural structural transformation: Productivity and equity impacts from China," Journal of Comparative Economics, Elsevier, vol. 37(4), pages 629-646, December.
    45. Sheng, Yu & Song, Ligang, 2013. "Re-estimation of firms' total factor productivity in China's iron and steel industry," China Economic Review, Elsevier, vol. 24(C), pages 177-188.
    46. Yanjie Zhang & Xiaobing Wang & Thomas Glauben & Bernhard Brümmer, 2011. "The impact of land reallocation on technical efficiency: evidence from China," Agricultural Economics, International Association of Agricultural Economists, vol. 42(4), pages 495-507, July.
    47. Gong, Binlei, 2018. "Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015," Journal of Development Economics, Elsevier, vol. 132(C), pages 18-31.
    48. Robert Dekle & Guillaume Vandenbroucke, 2010. "Whither Chinese Growth? A Sectoral Growth Accounting Approach," Review of Development Economics, Wiley Blackwell, vol. 14(3), pages 487-498, August.
    49. Kecuk Suhariyanto & Colin Thirtle, 2001. "Asian Agricultural Productivity and Convergence," Journal of Agricultural Economics, Wiley Blackwell, vol. 52(3), pages 96-110, September.
    50. Binlei Gong, 2020. "Effects of Ownership and Business Portfolio on Production in the Oil and Gas Industry," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    51. Huang,Yiping, 1998. "Agricultural Reform in China," Cambridge Books, Cambridge University Press, number 9780521620550.
    52. Lichtenberg, Frank R, 1994. "Testing the Convergence Hypothesis," The Review of Economics and Statistics, MIT Press, vol. 76(3), pages 576-579, August.
    53. Binlei Gong & Robin C. Sickles, 2020. "Non-structural and structural models in productivity analysis: study of the British Isles during the 2007–2009 financial crisis," Journal of Productivity Analysis, Springer, vol. 53(2), pages 243-263, April.
    54. Alan De Brauw & Jikun Huang & Scott Rozelle, 2004. "The sequencing of reform policies in China's agricultural transition," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 12(3), pages 427-465, September.
    55. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    56. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    57. Anthony Rezitis, 2010. "Agricultural productivity and convergence: Europe and the United States," Applied Economics, Taylor & Francis Journals, vol. 42(8), pages 1029-1044.
    58. Cameron, Gavin & Proudman, James & Redding, Stephen, 2005. "Technological convergence, R&D, trade and productivity growth," European Economic Review, Elsevier, vol. 49(3), pages 775-807, April.
    59. Derek Headey & Mohammad Alauddin & D.S. Prasada Rao, 2010. "Explaining agricultural productivity growth: an international perspective," Agricultural Economics, International Association of Agricultural Economists, vol. 41(1), pages 1-14, January.
    60. Monchuk, Daniel C. & Chen, Zhuo & Bonaparte, Yosef, 2010. "Explaining production inefficiency in China's agriculture using data envelopment analysis and semi-parametric bootstrapping," China Economic Review, Elsevier, vol. 21(2), pages 346-354, June.
    61. Songqing Jin & Hengyun Ma & Jikun Huang & Ruifa Hu & Scott Rozelle, 2010. "Productivity, efficiency and technical change: measuring the performance of China’s transforming agriculture," Journal of Productivity Analysis, Springer, vol. 33(3), pages 191-207, June.
    62. Sickles,Robin C. & Zelenyuk,Valentin, 2019. "Measurement of Productivity and Efficiency," Cambridge Books, Cambridge University Press, number 9781107036161.
    63. Lin, Justin Yifu, 1992. "Rural Reforms and Agricultural Growth in China," American Economic Review, American Economic Association, vol. 82(1), pages 34-51, March.
    64. Fan, Shenggen & Zhang, Xiaobo, 2002. "Production and Productivity Growth in Chinese Agriculture: New National and Regional Measures," Economic Development and Cultural Change, University of Chicago Press, vol. 50(4), pages 819-838, July.
    65. V. Eldon Ball & Charles Hallahan & Richard Nehring, 2004. "Convergence of Productivity: An Analysis of the Catch-up Hypothesis within a Panel of States," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(5), pages 1315-1321.
    66. Daniel J. Henderson & R. Robert Russell, 2005. "Human Capital And Convergence: A Production-Frontier Approach ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1167-1205, November.
    67. Chiu, Chung-Yueh & Lin, Chang-Ching & Yang, Chih-Hai, 2019. "Technological catching-up between two ASEAN members and China: A metafrontier approach," China Economic Review, Elsevier, vol. 54(C), pages 12-25.
    68. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    69. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2008. "Total factor productivity growth in China's agricultural sector," China Economic Review, Elsevier, vol. 19(4), pages 580-593, December.
    70. Nin, Alejandro & Arndt, Channing & Preckel, Paul V., 2003. "Is agricultural productivity in developing countries really shrinking? New evidence using a modified nonparametric approach," Journal of Development Economics, Elsevier, vol. 71(2), pages 395-415, August.
    71. Sun Ling Wang & Francis Tuan & Fred Gale & Agapi Somwaru & James Hansen, 2013. "China's regional agricultural productivity growth in 1985–2007: A multilateral comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 44(2), pages 241-251, March.
    72. Wu, Shunxiang, et al, 2001. "Productivity Growth and Its Components in Chinese Agriculture after Reforms," Review of Development Economics, Wiley Blackwell, vol. 5(3), pages 375-391, October.
    73. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    74. McErlean, Seamus & Wu, Ziping, 2003. "Regional agricultural labour productivity convergence in China," Food Policy, Elsevier, vol. 28(3), pages 237-252, June.
    75. Gong, Binlei, 2018. "Different behaviors in natural gas production between national and private oil companies: Economics-driven or environment-driven?," Energy Policy, Elsevier, vol. 114(C), pages 145-152.
    76. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    77. Wen, Guanzhong James, 1993. "Total Factor Productivity Change in China's Farming Sector: 1952-1989," Economic Development and Cultural Change, University of Chicago Press, vol. 42(1), pages 1-41, October.
    78. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    79. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    80. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    81. Yanrui Wu, 2011. "Total factor productivity growth in China: a review," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 9(2), pages 111-126.
    82. W, Y, 1995. "Productivity Growth, Technological Progress, and Technical Efficiency Change in China: A Three-Sector Analysis1," Journal of Comparative Economics, Elsevier, vol. 21(2), pages 207-229, October.
    83. Binlei Gong, 2018. "The Impact of Public Expenditure and International Trade on Agricultural Productivity in China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(15), pages 3438-3453, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yu & Zhong, Honglin & Kong, Fanbin & Zhang, Ning, 2023. "Can China achieve carbon neutrality without power shortage? A substitutability perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Chen, Shuai & Gong, Binlei, 2021. "Response and adaptation of agriculture to climate change: Evidence from China," Journal of Development Economics, Elsevier, vol. 148(C).
    3. Cui, Wenyue & Tang, Jie, 2023. "Innovation convergence clubs and their driving factors within urban agglomeration," Economic Modelling, Elsevier, vol. 121(C).
    4. Ito, Junichi & Li, Xinyi, 2023. "Interplay between China’s grain self-sufficiency policy shifts and interregional, intertemporal productivity differences," Food Policy, Elsevier, vol. 117(C).
    5. Deping Ye & Shangsong Zhen & Wei Wang & Yunqiang Liu, 2023. "Spatial double dividend from China’s main grain-producing areas policy: total factor productivity and the net carbon effect," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-22, December.
    6. Mukhopadhyay, Debabrata, 2021. "Are Crop Yield Gaps Narrowing Across Countries? A Study Based on Exploratory Econometric Analysis," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 9(1), January.
    7. Wangda Liao & Fusheng Zeng & Meseret Chanieabate, 2022. "Mechanization of Small-Scale Agriculture in China: Lessons for Enhancing Smallholder Access to Agricultural Machinery," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    8. Jianxu Liu & Mengjiao Wang & Li Yang & Sanzidur Rahman & Songsak Sriboonchitta, 2020. "Agricultural Productivity Growth and Its Determinants in South and Southeast Asian Countries," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    9. Abbas Ali Chandio & Yasir A. Nasereldin & Dao Le Trang Anh & Yashuang Tang & Ghulam Raza Sargani & Huaquan Zhang, 2022. "The Impact of Technological Progress and Climate Change on Food Crop Production: Evidence from Sichuan—China," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    10. Dong, Qi & Murakami, Tomoaki & Nakashima, Yasuhiro, 2021. "Induced Bias of Technological Change in Agriculture and Structural Transformation: A Translog Cost Function Analysis of Chinese Cereal Production," 2021 Conference, August 17-31, 2021, Virtual 315373, International Association of Agricultural Economists.
    11. Lingran Yuan & Shurui Zhang & Shuo Wang & Zesen Qian & Binlei Gong, 2021. "World agricultural convergence," Journal of Productivity Analysis, Springer, vol. 55(2), pages 135-153, April.
    12. Zhang, Qizheng & Qian, Zesen & Wang, Shuo & Yuan, Lingran & Gong, Binlei, 2022. "Productivity drain or productivity gain? The effect of new technology adoption in the oilfield market," Energy Economics, Elsevier, vol. 108(C).
    13. Zesen Qian & Lingran Yuan & Shuo Wang & Qizheng Zhang & Binlei Gong, 2021. "Epidemics, Convergence, and Common Prosperity: Evidence from China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 29(6), pages 117-138, November.
    14. Huiquan Li & Qingning Lin & Yan Wang & Shiping Mao, 2023. "Can Digital Finance Improve China’s Agricultural Green Total Factor Productivity?," Agriculture, MDPI, vol. 13(7), pages 1-19, July.
    15. Hongyun Zheng & Wanglin Ma, 2021. "The role of resource reallocation in promoting total factor productivity growth: Insights from China’s agricultural sector," Review of Development Economics, Wiley Blackwell, vol. 25(4), pages 2350-2371, November.
    16. Zhaohong Wu & Wenyuan Hua & Liangguo Luo & Katsuya Tanaka, 2022. "Technical Efficiency of Maize Production and Its Influencing Factors in the World’s Largest Groundwater Drop Funnel Area, China," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
    17. Yumeng Gu & Chunjie Qi & Fuxing Liu & Quanyong Lei & Yuchao Ding, 2023. "Spatiotemporal Evolution and Spatial Convergence Analysis of Total Factor Productivity of Citrus in China," Agriculture, MDPI, vol. 13(6), pages 1-14, June.
    18. Zhuohui Yu & Qingning Lin & Changli Huang, 2022. "Re-Measurement of Agriculture Green Total Factor Productivity in China from a Carbon Sink Perspective," Agriculture, MDPI, vol. 12(12), pages 1-26, November.
    19. Yuan, Lingran & Zhang, Qizheng & Wang, Shuo & Hu, Weibin & Gong, Binlei, 2022. "Effects of international trade on world agricultural production and productivity: evidence from a panel of 126 countries 1962-2014," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 25(2), March.
    20. Jintao Zhan & Yubei Ma & Wuyang Hu & Chao Chen & Qinan Lu, 2022. "Enhancing rural income through public agricultural R&D: Spatial spillover and infrastructure thresholds," Review of Development Economics, Wiley Blackwell, vol. 26(2), pages 1083-1107, May.
    21. Gui Jin & Han Yu & Dawei He & Baishu Guo, 2024. "Agricultural Production Efficiency and Ecological Transformation Efficiency in the Yangtze River Economic Belt," Land, MDPI, vol. 13(1), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingran Yuan & Shurui Zhang & Shuo Wang & Zesen Qian & Binlei Gong, 2021. "World agricultural convergence," Journal of Productivity Analysis, Springer, vol. 55(2), pages 135-153, April.
    2. Gong, Binlei, 2020. "Measuring and Achieving World Agricultural Convergence," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304347, Agricultural and Applied Economics Association.
    3. Gong, Binlei, 2018. "Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015," Journal of Development Economics, Elsevier, vol. 132(C), pages 18-31.
    4. Ma, Shuzhong & Feng, Han, 2013. "Will the decline of efficiency in China's agriculture come to an end? An analysis based on opening and convergence," China Economic Review, Elsevier, vol. 27(C), pages 179-190.
    5. Wang, Sun Ling & Huang, Jikun & Wang, Xiaobing & Tuan, Francis, 2019. "Are China’s regional agricultural productivities converging: How and why?," Food Policy, Elsevier, vol. 86(C), pages 1-1.
    6. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2008. "Total factor productivity growth in China's agricultural sector," China Economic Review, Elsevier, vol. 19(4), pages 580-593, December.
    7. Binlei Gong, 2020. "New Growth Accounting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 641-661, March.
    8. Sheng, Yu & Tian, Xiaohui & Qiao, Weiqing & Peng, Chao, 2020. "Measuring agricultural total factor productivity in China: pattern and drivers over the period of 1978-2016," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(1), January.
    9. Ito, Junichi, 2010. "Inter-regional difference of agricultural productivity in China: Distinction between biochemical and machinery technology," China Economic Review, Elsevier, vol. 21(3), pages 394-410, September.
    10. Vu, Linh Hoang, 2012. "Vietnam’s Agricultural Productivity: A Malmquist Index Approach," MPRA Paper 94800, University Library of Munich, Germany.
    11. Kang Yu & Xiangfei Xin & J. Alexander Nuetah & Ping Guo, 2011. "Agricultural growth dynamics and decision mechanism in Chinese provinces: 1988‐2008," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 3(2), pages 150-170, May.
    12. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    13. Xin, Xiangfei & Qin, Fu, 2009. "Decomposition of Agricultural Labor Productivity Growth and its Regional Disparity in China," 2009 Conference, August 16-22, 2009, Beijing, China 51047, International Association of Agricultural Economists.
    14. Binlei Gong & Robin C. Sickles, 2020. "Non-structural and structural models in productivity analysis: study of the British Isles during the 2007–2009 financial crisis," Journal of Productivity Analysis, Springer, vol. 53(2), pages 243-263, April.
    15. Rungsuriyawiboon, Supawat & Xiaobing, Wang, 2007. "Recent Evidence On Agricultural Efficiency And Productivity In China: A Metafrontier Approach," IAMO Discussion Papers 90863, Institute of Agricultural Development in Transition Economies (IAMO).
    16. Alejandro Nin-Pratt & Bingxin Yu & Shenggen Fan, 2010. "Comparisons of agricultural productivity growth in China and India," Journal of Productivity Analysis, Springer, vol. 33(3), pages 209-223, June.
    17. Rungsuriyawiboon, Supawat & Wang, Xiaobing, 2007. "Recent evidence on agricultural efficiency and productivity in China: a metafrontier approach [Neue Anhaltspunkte für Effizienz und Produktivität in der chinesischen Agrarproduktion: Eine Metafront," IAMO Discussion Papers 104, Leibniz Institute of Agricultural Development in Transition Economies (IAMO).
    18. Chen, Shuai & Gong, Binlei, 2021. "Response and adaptation of agriculture to climate change: Evidence from China," Journal of Development Economics, Elsevier, vol. 148(C).
    19. Carter, Colin A. & Estrin, Andrew J., 2001. "Market Reforms Versus Structural Reforms in Rural China," Journal of Comparative Economics, Elsevier, vol. 29(3), pages 527-541, September.
    20. Zhang, Qizheng & Qian, Zesen & Wang, Shuo & Yuan, Lingran & Gong, Binlei, 2022. "Productivity drain or productivity gain? The effect of new technology adoption in the oilfield market," Energy Economics, Elsevier, vol. 108(C).

    More about this item

    Keywords

    Agricultural convergence; Total factor productivity; Stochastic frontier analysis; Reform and opening up in China; County-level and commodity-level data;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chieco:v:60:y:2020:i:c:s1043951x20300201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/chieco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.