IDEAS home Printed from https://ideas.repec.org/a/eee/jfpoli/v117y2023ics0306919223000441.html
   My bibliography  Save this article

Interplay between China’s grain self-sufficiency policy shifts and interregional, intertemporal productivity differences

Author

Listed:
  • Ito, Junichi
  • Li, Xinyi

Abstract

In 2013, the Communist Party of China decided to partially relax its self-sufficiency targets for grain, historically first recognizing moderate imports as a policy option for ensuring food security in the country. This study empirically examines the interplay between the policy shifts and the interregional, intertemporal productivity differences in Chinese agriculture. It employs a meta-frontier stochastic output distance function approach. Our empirical result shows that input augmentation was the main contributor to the agricultural output growth during 1984–2000, whereas total factor productivity is the main driver of the growth during 2001–2020. This lends strong support to an argument in the literature that Chinese crop production has recently transformed from a resource-input-driven activity to one driven by science and technology. Our study also demonstrates that the western region, which far lagged behind others in the past in terms of agricultural technology, has made remarkable progress during 2001–2020, which confirms the cross-regional productivity convergence over time. It is likely that farmers in this region were better able to gain a higher economic return from crop diversification into horticulture, for which they might have been all the more motivated to improve their productivity.

Suggested Citation

  • Ito, Junichi & Li, Xinyi, 2023. "Interplay between China’s grain self-sufficiency policy shifts and interregional, intertemporal productivity differences," Food Policy, Elsevier, vol. 117(C).
  • Handle: RePEc:eee:jfpoli:v:117:y:2023:i:c:s0306919223000441
    DOI: 10.1016/j.foodpol.2023.102446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306919223000441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.foodpol.2023.102446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panpan Diao & Zhonggen Zhang & Zhenyong Jin, 2018. "Dynamic and static analysis of agricultural productivity in China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 10(2), pages 293-312, May.
    2. Yu Sheng & Xiaohui Tian & Weiqing Qiao & Chao Peng, 2020. "Measuring agricultural total factor productivity in China: pattern and drivers over the period of 1978‐2016," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(1), pages 82-103, January.
    3. Feng, Guohua & Serletis, Apostolos, 2010. "Efficiency, technical change, and returns to scale in large US banks: Panel data evidence from an output distance function satisfying theoretical regularity," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 127-138, January.
    4. Konstantinos Giannakas & Richard Schoney & Vangelis Tzouvelekas, 2001. "Technical Efficiency, Technological Change and Output Growth of Wheat Farms in Saskatchewan," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 49(2), pages 135-152, July.
    5. Cliff Huang & Tai-Hsin Huang & Nan-Hung Liu, 2014. "A new approach to estimating the metafrontier production function based on a stochastic frontier framework," Journal of Productivity Analysis, Springer, vol. 42(3), pages 241-254, December.
    6. Alejandro Nin Pratt & Bingxin Yu & Shenggen Fan, 2009. "The total factor productivity in China and India: new measures and approaches," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 1(1), pages 9-22, January.
    7. Song, Xiaoqing & Wang, Xiong & Li, Xinyi & Zhang, Weina & Scheffran, Jürgen, 2021. "Policy-oriented versus market-induced: Factors influencing crop diversity across China," Ecological Economics, Elsevier, vol. 190(C).
    8. Jia, Junxue & Ma, Guangrong & Qin, Cong & Wang, Liyan, 2020. "Place-based policies, state-led industrialisation, and regional development: Evidence from China's Great Western Development Programme," European Economic Review, Elsevier, vol. 123(C).
    9. Ligia Alba Melo-Becerra & Antonio José Orozco-Gallo, 2017. "Technical efficiency for Colombian small crop and livestock farmers: A stochastic metafrontier approach for different production systems," Journal of Productivity Analysis, Springer, vol. 47(1), pages 1-16, February.
    10. Yi, Fujin & Sun, Dingqiang & Zhou, Yingheng, 2015. "Grain subsidy, liquidity constraints and food security—Impact of the grain subsidy program on the grain-sown areas in China," Food Policy, Elsevier, vol. 50(C), pages 114-124.
    11. Nguyen, Hoa-Thi-Minh & Do, Huong & Kompas, Tom, 2021. "Economic efficiency versus social equity: The productivity challenge for rice production in a ‘greying’ rural Vietnam," World Development, Elsevier, vol. 148(C).
    12. Kotchikpa G. Lawin & Lota D. Tamini, 2019. "Tenure Security and Farm Efficiency Analysis Correcting for Biases from Observed and Unobserved Variables: Evidence from Benin," Journal of Agricultural Economics, Wiley Blackwell, vol. 70(1), pages 116-134, February.
    13. Shen, Zhiyang & Baležentis, Tomas & Ferrier, Gary D., 2019. "Agricultural productivity evolution in China: A generalized decomposition of the Luenberger-Hicks-Moorsteen productivity indicator," China Economic Review, Elsevier, vol. 57(C).
    14. Gong, Binlei, 2020. "Agricultural productivity convergence in China," China Economic Review, Elsevier, vol. 60(C).
    15. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    16. Eric S. Owusu & Boris E. Bravo-Ureta, 2022. "Gender and Productivity Differentials in Smallholder Groundnut Farming in Malawi: Accounting for Technology Differences," Journal of Development Studies, Taylor & Francis Journals, vol. 58(5), pages 989-1013, May.
    17. Panpan Diao & Zhonggen Zhang & Zhenyong Jin, 2018. "Dynamic and static analysis of agricultural productivity in China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 10(2), pages 293-312, May.
    18. Nathan D. DeLay & Nathanael M. Thompson & James R. Mintert, 2022. "Precision agriculture technology adoption and technical efficiency," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 195-219, February.
    19. Tim Coelli & Sergio Perelman, 2000. "Technical efficiency of European railways: a distance function approach," Applied Economics, Taylor & Francis Journals, vol. 32(15), pages 1967-1976.
    20. Khanal, Uttam & Wilson, Clevo & Shankar, Sriram & Hoang, Viet-Ngu & Lee, Boon, 2018. "Farm performance analysis: Technical efficiencies and technology gaps of Nepalese farmers in different agro-ecological regions," Land Use Policy, Elsevier, vol. 76(C), pages 645-653.
    21. Hossein Mehrabi Boshrabadi & Renato Villano & Euan Fleming, 2008. "Technical efficiency and environmental‐technological gaps in wheat production in Kerman province of Iran," Agricultural Economics, International Association of Agricultural Economists, vol. 38(1), pages 67-76, January.
    22. Diana Aguiar & Leonardo Costa & Elvira Silva, 2017. "An Attempt To Explain Differences In Economic Growth: A Stochastic Frontier Approach," Bulletin of Economic Research, Wiley Blackwell, vol. 69(4), pages 42-65, October.
    23. Mustafa U. Karakaplan, 2017. "Fitting endogenous stochastic frontier models in Stata," Stata Journal, StataCorp LP, vol. 17(1), pages 39-55, March.
    24. Li, Xinyi & Ito, Junichi, 2023. "Determinants of technical efficiency and farmers’ crop choice rationality: A case study of rural Gansu, China," Journal of Asian Economics, Elsevier, vol. 84(C).
    25. Sheng, Yu & Tian, Xiaohui & Qiao, Weiqing & Peng, Chao, 2020. "Measuring agricultural total factor productivity in China: pattern and drivers over the period of 1978-2016," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(1), January.
    26. Alejandro Nin Pratt & Bingxin Yu & Shenggen Fan, 2009. "The total factor productivity in China and India: new measures and approaches," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 1(1), pages 9-22, January.
    27. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    28. Songqing Jin & Hengyun Ma & Jikun Huang & Ruifa Hu & Scott Rozelle, 2010. "Productivity, efficiency and technical change: measuring the performance of China’s transforming agriculture," Journal of Productivity Analysis, Springer, vol. 33(3), pages 191-207, June.
    29. He, Chaofei & Ho, Chun-Yu & Yu, Leng & Zhu, Xi, 2019. "Public investment and food security: Evidence from the Hundred Billion Plan in China," China Economic Review, Elsevier, vol. 54(C), pages 176-190.
    30. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2008. "Total factor productivity growth in China's agricultural sector," China Economic Review, Elsevier, vol. 19(4), pages 580-593, December.
    31. Abebayehu Girma Geffersa & Frank Wogbe Agbola & Amir Mahmood, 2022. "Modelling technical efficiency and technology gap in smallholder maize sector in Ethiopia: accounting for farm heterogeneity," Applied Economics, Taylor & Francis Journals, vol. 54(5), pages 506-521, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    2. Li, Xinyi & Ito, Junichi, 2023. "Determinants of technical efficiency and farmers’ crop choice rationality: A case study of rural Gansu, China," Journal of Asian Economics, Elsevier, vol. 84(C).
    3. Bao Hoang Nguyen & Robin C. Sickles & Valentin Zelenyuk, 2021. "What do we know from the vast literature on efficiency and productivity in healthcare? A Systematic Review and Bibliometric Analysis," CEPA Working Papers Series WP092021, School of Economics, University of Queensland, Australia.
    4. Ana María Iregui-Bohórquez & Ligia Alba Melo-Becerra & Antonio José Orozco-Gallo, 2020. "Corporate taxes and firms' performance: A meta-frontier approach," Borradores de Economia 1116, Banco de la Republica de Colombia.
    5. Hongyun Zheng & Wanglin Ma, 2021. "The role of resource reallocation in promoting total factor productivity growth: Insights from China’s agricultural sector," Review of Development Economics, Wiley Blackwell, vol. 25(4), pages 2350-2371, November.
    6. Bao Hoang Nguyen & Robin C. Sickles & Valentin Zelenyuk, 2022. "Efficiency Analysis with Stochastic Frontier Models Using Popular Statistical Softwares," Springer Books, in: Duangkamon Chotikapanich & Alicia N. Rambaldi & Nicholas Rohde (ed.), Advances in Economic Measurement, chapter 0, pages 129-171, Springer.
    7. Khanal, Uttam & Wilson, Clevo & Shankar, Sriram & Hoang, Viet-Ngu & Lee, Boon, 2018. "Farm performance analysis: Technical efficiencies and technology gaps of Nepalese farmers in different agro-ecological regions," Land Use Policy, Elsevier, vol. 76(C), pages 645-653.
    8. Tai-Hsin Huang & Yi-Chun Lin & Kuo-Jui Huang & Yu-Wei Liao, 2022. "Comparing Cost Efficiency Between Financial and Non-financial Holding Banks and Insurers in Taiwan Under the Framework of Copula Methods and Metafrontier," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(4), pages 735-766, December.
    9. Abebayehu Girma Geffersa & Frank Wogbe Agbola & Amir Mahmood, 2022. "Modelling technical efficiency and technology gap in smallholder maize sector in Ethiopia: accounting for farm heterogeneity," Applied Economics, Taylor & Francis Journals, vol. 54(5), pages 506-521, January.
    10. Bravo-Ureta, Boris E. & Higgins, Daniel & Arslan, Aslihan, 2020. "Irrigation infrastructure and farm productivity in the Philippines: A stochastic Meta-Frontier analysis," World Development, Elsevier, vol. 135(C).
    11. Phuc Trong Ho & Pham Xuan Hung & Nguyen Duc Tien, 2023. "Effects of varieties and seasons on cost efficiency in rice farming: A stochastic metafrontier approach," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society, vol. 13(2), pages 120-129.
    12. Wirat Krasachat, 2023. "The Effect of Good Agricultural Practices on the Technical Efficiency of Chili Production in Thailand," Sustainability, MDPI, vol. 15(1), pages 1-25, January.
    13. Qian Liu & Yongmu Jiang & Carl‐Johan Lagerkvist & Wei Huang, 2023. "Extension services and the technical efficiency of crop‐specific farms in China," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(1), pages 436-459, March.
    14. Latruffe, Laure & Bravo-Ureta, Boris E. & Moreira, Victor H. & Desjeux, Yann & Dupraz, Pierre, 2012. "Productivity and Subsidies in the European Union: An Analysis for Dairy Farms Using Input Distance Frontiers," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126846, International Association of Agricultural Economists.
    15. Villano, Renato & Asante, Bright Owusu & Bravo-Ureta, Boris, 2019. "Farming systems and productivity gaps: Opportunities for improving smallholder performance in the Forest-Savannah transition zone of Ghana," Land Use Policy, Elsevier, vol. 82(C), pages 220-227.
    16. Thanh Pham Thien Nguyen & Son Hong Nghiem & Eduardo Roca & Parmendra Sharma, 2016. "Efficiency, innovation and competition: evidence from Vietnam, China and India," Empirical Economics, Springer, vol. 51(3), pages 1235-1259, November.
    17. Richard Adjei Dwumfour & Eric Fosu Oteng-Abayie & Emmanuel Kwasi Mensah, 2022. "Bank efficiency and the bank lending channel: new evidence," Empirical Economics, Springer, vol. 63(3), pages 1489-1542, September.
    18. Nguyen, Hoa-Thi-Minh & Do, Huong & Kompas, Tom, 2021. "Economic efficiency versus social equity: The productivity challenge for rice production in a ‘greying’ rural Vietnam," World Development, Elsevier, vol. 148(C).
    19. Latruffe, Laure & Bravo-Ureta, Boris E. & Moreira, Victor H. & Desjeux, Yann & Dupraz, Pierre, 2011. "Productivity and Subsidies in European Union Countries: An Analysis for Dairy Farms Using Input Distance Frontiers," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114396, European Association of Agricultural Economists.
    20. Shen, Zhiyang & Wang, Songkai & Boussemart, Jean-Philippe & Hao, Yu, 2022. "Digital transition and green growth in Chinese agriculture," Technological Forecasting and Social Change, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfpoli:v:117:y:2023:i:c:s0306919223000441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/foodpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.