IDEAS home Printed from https://ideas.repec.org/a/eee/chieco/v57y2019ics1043951x19300768.html
   My bibliography  Save this article

Agricultural productivity evolution in China: A generalized decomposition of the Luenberger-Hicks-Moorsteen productivity indicator

Author

Listed:
  • Shen, Zhiyang
  • Baležentis, Tomas
  • Ferrier, Gary D.

Abstract

China has undergone a series of agricultural policy reforms since 1978. The measurement of the productivity gains and identification of the underlying drivers thereof are important facets of policy analysis. The commonly used Total Factor Productivity (TFP) measures often lack such desirable properties as completeness or independence of the direction of the optimization (orientation). In this paper, we take a top down approach by beginning with a TFP measure and then decomposing it into three mutually exclusive, exhaustive elements. In particular, we begin with the additively complete Luenberger-Hicks-Moorsteen (LHM) TFP indicator that takes into account both input and output changes when measuring productivity and then additively decompose it into measures of technological progress, technical efficiency change, and scale efficiency change. We develop a generalized decomposition of the LHM TFP indicator which encompasses both input-oriented and output-oriented changes over time. We illustrate this additively complete LHM TFP indicator using agricultural data from 31 Chinese provinces over the period 1997–2015. Our empirical results show that Chinese agricultural productivity growth (3.05% per annum) was mainly driven by technological progress (2.35% p.a.), with relatively small contributions from scale efficiency change (0.65% p.a.) and technical efficiency change (0.04% p.a.). We also found that productivity change and the relative importance of its components varied across both time and provinces.

Suggested Citation

  • Shen, Zhiyang & Baležentis, Tomas & Ferrier, Gary D., 2019. "Agricultural productivity evolution in China: A generalized decomposition of the Luenberger-Hicks-Moorsteen productivity indicator," China Economic Review, Elsevier, vol. 57(C).
  • Handle: RePEc:eee:chieco:v:57:y:2019:i:c:s1043951x19300768
    DOI: 10.1016/j.chieco.2019.101315
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1043951X19300768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chieco.2019.101315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueli Chen & Vivian Valdmanis & Tuotuo Yu, 2020. "Productivity Growth in Chinese Medical Institutions during 2009–2018," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    2. Ang, Frederic & Kerstens, Pieter Jan, 2020. "A superlative indicator for the Luenberger-Hicks-Moorsteen productivity indicator: Theory and application," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1161-1173.
    3. Xuelan Li & Rui Guan, 2023. "How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China?," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    4. Jianxu Liu & Xiaoqing Li & Shutong Liu & Sanzidur Rahman & Songsak Sriboonchitta, 2022. "Addressing Rural–Urban Income Gap in China through Farmers’ Education and Agricultural Productivity Growth via Mediation and Interaction Effects," Agriculture, MDPI, vol. 12(11), pages 1-23, November.
    5. Ito, Junichi & Li, Xinyi, 2023. "Interplay between China’s grain self-sufficiency policy shifts and interregional, intertemporal productivity differences," Food Policy, Elsevier, vol. 117(C).
    6. Li Li & Atsushi Tsunekawa & Yangshangyu Zuo & Atsushi Koike, 2019. "Conservation Payments and Technical Efficiency of farm Households Participating in the Grain for Green Program on the Loess Plateau of China," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    7. Haonan Zhang & Zheng Chen & Jieyong Wang & Haitao Wang & Yingwen Zhang, 2023. "Spatial-Temporal Pattern of Agricultural Total Factor Productivity Change (Tfpch) in China and Its Implications for Agricultural Sustainable Development," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    8. Miao, Zhuang & Chen, Xiaodong, 2022. "Combining parametric and non-parametric approach, variable & source -specific productivity changes and rebound effect of energy & environment," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    9. Dong, Qi & Murakami, Tomoaki & Nakashima, Yasuhiro, 2021. "Induced Bias of Technological Change in Agriculture and Structural Transformation: A Translog Cost Function Analysis of Chinese Cereal Production," 2021 Conference, August 17-31, 2021, Virtual 315373, International Association of Agricultural Economists.
    10. Xin, Wang & Yanping, Song & Tan, Li, 2021. "Small farmer's planting confidence and willingness to pay for leguminous green fertilizer: environmental attributes perspective," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 25(1), August.
    11. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    12. Zhu, Ning & Streimikis, Justas & Yu, Zhiqian & Balezentis, Tomas, 2023. "Energy-sustainable agriculture in the European Union member states: Overall productivity growth and structural efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    13. Tang, Liwei & He, Gang, 2021. "How to improve total factor energy efficiency? An empirical analysis of the Yangtze River economic belt of China," Energy, Elsevier, vol. 235(C).
    14. Zhensheng Chen & Xueli Chen & Tomas Baležentis & Xiaoqing Gan & Vivian Valdmanis, 2020. "Productivity change and its driving forces in Chinese healthcare sector," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-16, December.
    15. Yuanying Chi & Yangmei Xu & Xu Wang & Feng Jin & Jialin Li, 2021. "A Win–Win Scenario for Agricultural Green Development and Farmers’ Agricultural Income: An Empirical Analysis Based on the EKC Hypothesis," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    16. Jianxu Liu & Changrui Dong & Shutong Liu & Sanzidur Rahman & Songsak Sriboonchitta, 2020. "Sources of Total-Factor Productivity and Efficiency Changes in China’s Agriculture," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    17. Xiangyu Hua & Haiping Lv & Xiangrong Jin, 2021. "Research on High-Quality Development Efficiency and Total Factor Productivity of Regional Economies in China," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    18. Haiyan Deng & Ge Bai & Kristiaan Kerstens & Zhiyang Shen, 2023. "Comparing green productivity under convex and nonconvex technologies: Which is a robust approach consistent with energy structure?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(8), pages 4377-4394, December.
    19. Siying Hu & Shangkun Lu & Huiqiu Zhou, 2023. "Public Investment, Environmental Regulation, and the Sustainable Development of Agriculture in China Based on the Decomposition of Green Total Factor Productivity," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    20. Zhang, Yumei & Diao, Xinshen, 2020. "The changing role of agriculture with economic structural change – The case of China," China Economic Review, Elsevier, vol. 62(C).
    21. Gui Jin & Han Yu & Dawei He & Baishu Guo, 2024. "Agricultural Production Efficiency and Ecological Transformation Efficiency in the Yangtze River Economic Belt," Land, MDPI, vol. 13(1), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chieco:v:57:y:2019:i:c:s1043951x19300768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/chieco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.