IDEAS home Printed from https://ideas.repec.org/r/hal/wpaper/hal-04141001.html

Construction of a fuel demand function portraying interfuel substitution, a system dynamics approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. is not listed on IDEAS
  2. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
  3. Lin, Boqiang & Liu, Weisheng, 2017. "Estimation of energy substitution effect in China's machinery industry--based on the corrected formula for elasticity of substitution," Energy, Elsevier, vol. 129(C), pages 246-254.
  4. Wan, Yi & Kober, Tom & Densing, Martin, 2022. "Nonlinear inverse demand curves in electricity market modeling," Energy Economics, Elsevier, vol. 107(C).
  5. Vincent Brémond & Emmanuel Hache & Tovonony Razafindrabe, 2015. "On the link between oil price and exchange rate : A time-varying VAR parameter approach," Working Papers hal-03206684, HAL.
  6. Qudrat-Ullah, Hassan, 2014. "Green power in Ontario: A dynamic model-based analysis," Energy, Elsevier, vol. 77(C), pages 859-870.
  7. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
  8. Qudrat-Ullah, Hassan, 2017. "How to enhance the future use of energy policy simulation models through ex post validation," Energy, Elsevier, vol. 120(C), pages 58-66.
  9. Banal-Estanol, A. & Eckhause, J. & Massol, O., 2015. "Incentives for early adoption of carbon capture technology: further considerations from a European perspective," Working Papers 15/03, Department of Economics, City St George's, University of London.
  10. Darda, Md Abud & Guseo, Renato & Mortarino, Cinzia, 2015. "Nonlinear production path and an alternative reserves estimate for South Asian natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 654-664.
  11. Ibrahim Abada, 2012. "Study of the evolution of the northwestern European natural gas markets using S-GaMMES," Working Papers 1203, Chaire Economie du climat.
  12. Ibrahim Abada & Steven Gabriel & Vincent Briat & Olivier Massol, 2013. "A Generalized Nash–Cournot Model for the Northwestern European Natural Gas Markets with a Fuel Substitution Demand Function: The GaMMES Model," Networks and Spatial Economics, Springer, vol. 13(1), pages 1-42, March.
  13. Romagnoli, Francesco & Barisa, Aiga & Dzene, Ilze & Blumberga, Andra & Blumberga, Dagnija, 2014. "Implementation of different policy strategies promoting the use of wood fuel in the Latvian district heating system: Impact evaluation through a system dynamic model," Energy, Elsevier, vol. 76(C), pages 210-222.
  14. Weiwei Xiong & Liang Yan & Teng Wang & Yuguo Gao, 2020. "Substitution Effect of Natural Gas and the Energy Consumption Structure Transition in China," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
  15. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
  16. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
  17. Dupoux, Marion, 2019. "The land use change time-accounting failure," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
  18. Anthony Paris, 2016. "The Effect of Biofuels on the Link between Oil and Agricultural Commodity Prices: A Smooth Transition Cointegration Approach," EconomiX Working Papers 2016-5, University of Paris Nanterre, EconomiX.
  19. Xie, Chunping & Hawkes, Adam D., 2015. "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Elsevier, vol. 88(C), pages 260-267.
  20. Karmellos, M. & Kopidou, D. & Diakoulaki, D., 2016. "A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries," Energy, Elsevier, vol. 94(C), pages 680-692.
  21. Ibrahim Abada, 2012. "A stochastic generalized Nash-Cournot model for the northwestern European natural gas markets with a fuel substitution demand function: The S-GaMMES model," Working Papers 1202, Chaire Economie du climat.
  22. Emmanuel Hache, 2018. "Do renewable energies improve energy security in the long run?," International Economics, CEPII research center, issue 156, pages 127-135.
  23. Qudrat-Ullah, Hassan, 2022. "A review and analysis of renewable energy policies and CO2 emissions of Pakistan," Energy, Elsevier, vol. 238(PB).
  24. Ibrahim Abada & Pierre-André Jouvet, 2013. "A stochastic generalized Nash-Cournot model for the northwestern European natural gas markets: The S-GaMMES model," Working Papers 1308, Chaire Economie du climat.
  25. Siddiqui, Sauleh & Christensen, Adam, 2016. "Determining energy and climate market policy using multiobjective programs with equilibrium constraints," Energy, Elsevier, vol. 94(C), pages 316-325.
  26. Qudrat-Ullah, Hassan, 2015. "Independent power (or pollution) producers? Electricity reforms and IPPs in Pakistan," Energy, Elsevier, vol. 83(C), pages 240-251.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.