IDEAS home Printed from
   My bibliography  Save this article

Determining energy and climate market policy using multiobjective programs with equilibrium constraints


  • Siddiqui, Sauleh
  • Christensen, Adam


Energy and climate market policy is inherently multiobjective and multilevel, in that desired choices often conflict and are made at a higher level than influenced actors. Analyzing tradeoff between reducing emissions and keeping fuel prices low, while seeking compromise among producers, traders, and consumers is the crux of the policy problem. This paper aims to address this issue by combining multiobjective optimization problems, which allow the study of tradeoff between choices, with equilibrium problems that model the networks and players over which these policies are chosen, to produce a formulation called a Multiobjective Program with Equilibrium Constraints. We apply this formulation to the United States renewable fuel market to help understand why it has been so difficult in releasing the 2014 mandate for the RFS (Renewable Fuel Standard). The RFS ensures that a minimum volume of renewable fuel is included in transportation fuel sold in the United States. Determining the RFS volume requirements involves anticipating market reaction as well as balancing policy objectives. We provide policy alternatives to aid in setting these volume obligations that are applicable to a wide variety of climate and energy market settings and explain why the RFS is not an optimal policy for reducing emissions.

Suggested Citation

  • Siddiqui, Sauleh & Christensen, Adam, 2016. "Determining energy and climate market policy using multiobjective programs with equilibrium constraints," Energy, Elsevier, vol. 94(C), pages 316-325.
  • Handle: RePEc:eee:energy:v:94:y:2016:i:c:p:316-325
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Steven Gabriel & Sauleh Siddiqui & Antonio Conejo & Carlos Ruiz, 2013. "Solving Discretely-Constrained Nash–Cournot Games with an Application to Power Markets," Networks and Spatial Economics, Springer, vol. 13(3), pages 307-326, September.
    2. Tyner, Wallace E., 2013. "The Renewable Fuel Standard – Where Do We Go From Here?," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 28(4), pages 1-5.
    3. Hombach, Laura Elisabeth & Walther, Grit, 2015. "Pareto-efficient legal regulation of the (bio)fuel market using a bi-objective optimization model," European Journal of Operational Research, Elsevier, vol. 245(1), pages 286-295.
    4. Singh, Bhawna & Strømman, Anders H. & Hertwich, Edgar G., 2012. "Scenarios for the environmental impact of fossil fuel power: Co-benefits and trade-offs of carbon capture and storage," Energy, Elsevier, vol. 45(1), pages 762-770.
    5. William W. Hogan, 1997. "A Market Power Model with Strategic Interaction in Electricity Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-141.
    6. Cardell, Judith B. & Hitt, Carrie Cullen & Hogan, William W., 1997. "Market power and strategic interaction in electricity networks," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 109-137, March.
    7. Gabriel, S.A. & Rosendahl, K.E. & Egging, Ruud & Avetisyan, H.G. & Siddiqui, S., 2012. "Cartelization in gas markets: Studying the potential for a “Gas OPEC”," Energy Economics, Elsevier, vol. 34(1), pages 137-152.
    8. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    9. Huang, Yongxi & Chen, Yihsu, 2014. "Analysis of an imperfectly competitive cellulosic biofuel supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 1-14.
    10. Boersen, Arieke & Scholtens, Bert, 2014. "The relationship between European electricity markets and emission allowance futures prices in phase II of the EU (European Union) emission trading scheme," Energy, Elsevier, vol. 74(C), pages 585-594.
    11. Manne, Alan S. & Stephan, Gunter, 2005. "Global climate change and the equity–efficiency puzzle," Energy, Elsevier, vol. 30(14), pages 2525-2536.
    12. S. Siddiqui & S. Gabriel, 2013. "An SOS1-Based Approach for Solving MPECs with a Natural Gas Market Application," Networks and Spatial Economics, Springer, vol. 13(2), pages 205-227, June.
    13. Abada, Ibrahim & Briat, Vincent & Massol, Olivier, 2013. "Construction of a fuel demand function portraying interfuel substitution, a system dynamics approach," Energy, Elsevier, vol. 49(C), pages 240-251.
    14. Strand, Jon & Miller, Sebastian & Siddiqui, Sauleh, 2014. "Long-run carbon emission implications of energy-intensive infrastructure investments with a retrofit option," Energy Economics, Elsevier, vol. 46(C), pages 308-317.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:spr:joptap:v:176:y:2018:i:3:d:10.1007_s10957-018-1235-3 is not listed on IDEAS
    2. repec:eee:energy:v:141:y:2017:i:c:p:2045-2053 is not listed on IDEAS
    3. Olufolajimi Oke & Daniel Huppmann & Max Marshall & Ricky Poulton & Sauleh Siddiqui, 2016. "Mitigating Environmental and Public-Safety Risks of United States Crude-by-Rail Transport," Discussion Papers of DIW Berlin 1575, DIW Berlin, German Institute for Economic Research.
    4. repec:eee:ejores:v:268:y:2018:i:1:p:25-36 is not listed on IDEAS
    5. Feijoo, Felipe & Huppmann, Daniel & Sakiyama, Larissa & Siddiqui, Sauleh, 2016. "North American natural gas model: Impact of cross-border trade with Mexico," Energy, Elsevier, vol. 112(C), pages 1084-1095.
    6. Qudrat-Ullah, Hassan, 2017. "How to enhance the future use of energy policy simulation models through ex post validation," Energy, Elsevier, vol. 120(C), pages 58-66.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:94:y:2016:i:c:p:316-325. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.