IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v228y2021ics0360544221008252.html
   My bibliography  Save this article

Long-term investment planning for the electricity sector in Small Island Developing States: Case study for Jamaica

Author

Listed:
  • Atkinson, Travis R.
  • Preckel, Paul V.
  • Gotham, Douglas

Abstract

Long term infrastructure investment planning for the electricity sector in Small Island Developing States typically optimizes generation and transmission investments sequentially. Compared to a simultaneous planning method, the current practice may result in a misallocation of scarce resources. To address this, this paper makes two contributions. First, it presents a framework for assessing two features of long-term planning models while accounting for economic and geographic idiosyncrasies of small island states. These are: i) the simultaneous vs sequential treatment of generation and transmission investments and ii) the impact of loop flow (a phenomenon intrinsic to electricity transmission networks) on long-term investment planning. Second, it quantifies the magnitude of omitting these model features using Jamaica as a test case. Depending on the initial conditions of the network, a simultaneous planning approach yields cost-efficiency gains in the order of 3.3%–3.6%. This is substantial when converted to financial costs and excess infrastructure investments. Importantly, energy modelers may want to think carefully about whether or not their results are liable to suffer from omitting these features and by making data and program codes publicly available, this paper broadens the scope for energy economic research in small island states.

Suggested Citation

  • Atkinson, Travis R. & Preckel, Paul V. & Gotham, Douglas, 2021. "Long-term investment planning for the electricity sector in Small Island Developing States: Case study for Jamaica," Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008252
    DOI: 10.1016/j.energy.2021.120576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221008252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barati, Fatemeh & Jadid, Shahram & Zangeneh, Ali, 2019. "Private investor-based distributed generation expansion planning considering uncertainties of renewable generations," Energy, Elsevier, vol. 173(C), pages 1078-1091.
    2. Notton, Gilles, 2015. "Importance of islands in renewable energy production and storage: The situation of the French islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 260-269.
    3. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 358-387, November.
    4. Wu, F.F & Zheng, F.L. & Wen, F.S., 2006. "Transmission investment and expansion planning in a restructured electricity market," Energy, Elsevier, vol. 31(6), pages 954-966.
    5. Chao, Hung-po & Peck, Stephen & Oren, Shmuel & Wilson, Robert, 2000. "Flow-Based Transmission Rights and Congestion Management," The Electricity Journal, Elsevier, vol. 13(8), pages 38-58, October.
    6. Antunes, C.Henggeler & Martins, A.Gomes & Brito, Isabel Sofia, 2004. "A multiple objective mixed integer linear programming model for power generation expansion planning," Energy, Elsevier, vol. 29(4), pages 613-627.
    7. Chen, A.A. & Stephens, A.J. & Koon Koon, R. & Ashtine, M. & Mohammed-Koon Koon, K, 2020. "Pathways to climate change mitigation and stable energy by 100% renewable for a small island: Jamaica as an example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Gitizadeh, Mohsen & Kaji, Mahdi & Aghaei, Jamshid, 2013. "Risk based multiobjective generation expansion planning considering renewable energy sources," Energy, Elsevier, vol. 50(C), pages 74-82.
    9. Sarjiya, & Budi, Rizki Firmansyah Setya & Hadi, Sasongko Pramono, 2019. "Game theory for multi-objective and multi-period framework generation expansion planning in deregulated markets," Energy, Elsevier, vol. 174(C), pages 323-330.
    10. Kory Hedman & Shmuel Oren & Richard O’Neill, 2011. "Optimal transmission switching: economic efficiency and market implications," Journal of Regulatory Economics, Springer, vol. 40(2), pages 111-140, October.
    11. William W. Hogan, 1997. "A Market Power Model with Strategic Interaction in Electricity Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-141.
    12. Cardell, Judith B. & Hitt, Carrie Cullen & Hogan, William W., 1997. "Market power and strategic interaction in electricity networks," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 109-137, March.
    13. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 261-290, November.
    14. Weisser, Daniel, 2004. "On the economics of electricity consumption in small island developing states: a role for renewable energy technologies?," Energy Policy, Elsevier, vol. 32(1), pages 127-140, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zhongqun & Zheng, Ruijin, 2022. "Research on the impact of financial transmission rights on transmission expansion: A system dynamics model," Energy, Elsevier, vol. 239(PA).
    2. Atkinson, Travis & Preckel, Paul V. & Gotham, Douglas, 2022. "Costs and trade-offs associated with renewable energy policies for Small Island Developing States: Case study for Jamaica," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taheri, S. Saeid & Kazempour, Jalal & Seyedshenava, Seyedjalal, 2017. "Transmission expansion in an oligopoly considering generation investment equilibrium," Energy Economics, Elsevier, vol. 64(C), pages 55-62.
    2. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    3. Spiridonova, Olga, 2016. "Transmission capacities and competition in Western European electricity market," Energy Policy, Elsevier, vol. 96(C), pages 260-273.
    4. Groppi, Angelamaria & Fumagalli, Elena, 2014. "Network expansion by a proactive transmission system operator: A case study," Energy Policy, Elsevier, vol. 69(C), pages 610-623.
    5. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    6. Bertsch, Joachim & Hagspiel, Simeon & Just, Lisa, 2016. "Congestion management in power systems - Long-term modeling framework and large-scale application," EWI Working Papers 2015-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    7. Sauma, Enzo E. & Oren, Shmuel S., 2009. "Do generation firms in restructured electricity markets have incentives to support social-welfare-improving transmission investments?," Energy Economics, Elsevier, vol. 31(5), pages 676-689, September.
    8. Sertaç Oruç & Scott Cunningham, 2014. "Transmission Rights to the Electrical Transmission Grid in the Post Liberalization Era," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 5(4), pages 686-705, December.
    9. Joachim Bertsch & Simeon Hagspiel & Lisa Just, 2016. "Congestion management in power systems," Journal of Regulatory Economics, Springer, vol. 50(3), pages 290-327, December.
    10. Chao, Hung-po & Wilson, Robert, 2020. "Coordination of electricity transmission and generation investments," Energy Economics, Elsevier, vol. 86(C).
    11. Bjørndal, Endre & Bjørndal, Mette & Cai, Hong & Panos, Evangelos, 2018. "Hybrid pricing in a coupled European power market with more wind power," European Journal of Operational Research, Elsevier, vol. 264(3), pages 919-931.
    12. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    13. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    14. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    15. Chopin, Pierre & Guindé, Loïc & Causeret, François & Bergkvist, Göran & Blazy, Jean-Marc, 2019. "Integrating stakeholder preferences into assessment of scenarios for electricity production from locally produced biomass on a small island," Renewable Energy, Elsevier, vol. 131(C), pages 128-136.
    16. Camelo, Sergio & Papavasiliou, Anthony & de Castro, Luciano & Riascos, Álvaro & Oren, Shmuel, 2018. "A structural model to evaluate the transition from self-commitment to centralized unit commitment," Energy Economics, Elsevier, vol. 75(C), pages 560-572.
    17. Matamala, Carlos & Moreno, Rodrigo & Sauma, Enzo, 2019. "The value of network investment coordination to reduce environmental externalities when integrating renewables: Case on the Chilean transmission network," Energy Policy, Elsevier, vol. 126(C), pages 251-263.
    18. Yao, Jian & Oren, Shmuel S. & Adler, Ilan, 2007. "Two-settlement electricity markets with price caps and Cournot generation firms," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1279-1296, September.
    19. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    20. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.