IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v20y2013icp430-442.html
   My bibliography  Save this item

Application of solid oxide fuel cell technology for power generation—A review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dasheng Lee & Kuan-Chung Lin, 2020. "How to Transform Sustainable Energy Technology into a Unicorn Start-Up: Technology Review and Case Study," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
  2. Giorgia Ghiara & Paolo Piccardo & Valeria Bongiorno & Christian Geipel & Roberto Spotorno, 2020. "Characterization of Metallic Interconnects Extracted from Solid Oxide Fuel Cell Stacks Operated up to 20,000 h in Real Life Conditions: The Air Side," Energies, MDPI, vol. 13(24), pages 1-18, December.
  3. Singh, Surinder P. & Ohara, Brandon & Ku, Anthony Y., 2021. "Prospects for cost-competitive integrated gasification fuel cell systems," Applied Energy, Elsevier, vol. 290(C).
  4. Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.
  5. Pan, Zehua & Shen, Jian & Wang, Jingyi & Xu, Xinhai & Chan, Wei Ping & Liu, Siyu & Zhou, Yexin & Yan, Zilin & Jiao, Zhenjun & Lim, Teik-Thye & Zhong, Zheng, 2022. "Thermodynamic analyses of a standalone diesel-fueled distributed power generation system based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 308(C).
  6. Obara, Shin'ya & Kikuchi, Yoshinobu & Ishikawa, Kyosuke & Kawai, Masahito & Kashiwaya, Yoshiaki, 2014. "Operational analysis of a small-capacity cogeneration system with a gas hydrate battery," Energy, Elsevier, vol. 74(C), pages 810-828.
  7. Obara, Shin'ya & Morel, Jorge & Okada, Masaki & Kobayashi, Kazuma, 2016. "Performance evaluation of an independent microgrid comprising an integrated coal gasification fuel cell combined cycle, large-scale photovoltaics, and a pumped-storage power station," Energy, Elsevier, vol. 116(P1), pages 78-93.
  8. Giarola, Sara & Forte, Ornella & Lanzini, Andrea & Gandiglio, Marta & Santarelli, Massimo & Hawkes, Adam, 2018. "Techno-economic assessment of biogas-fed solid oxide fuel cell combined heat and power system at industrial scale," Applied Energy, Elsevier, vol. 211(C), pages 689-704.
  9. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Dong, Peng, 2019. "Thermodynamics analysis of a turbojet engine integrated with a fuel cell and steam injection for high-speed flight," Energy, Elsevier, vol. 185(C), pages 190-201.
  10. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
  11. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
  12. Murat Peksen, 2021. "Hydrogen Technology towards the Solution of Environment-Friendly New Energy Vehicles," Energies, MDPI, vol. 14(16), pages 1-6, August.
  13. Ong, Samuel & Al-Othman, Amani & Tawalbeh, Muhammad, 2023. "Emerging technologies in prognostics for fuel cells including direct hydrocarbon fuel cells," Energy, Elsevier, vol. 277(C).
  14. Saadabadi, S. Ali & Thallam Thattai, Aditya & Fan, Liyuan & Lindeboom, Ralph E.F. & Spanjers, Henri & Aravind, P.V., 2019. "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, Elsevier, vol. 134(C), pages 194-214.
  15. Mohsen Fallah Vostakola & Bahman Amini Horri, 2021. "Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review," Energies, MDPI, vol. 14(5), pages 1-53, February.
  16. Baldinelli, Arianna & Barelli, Linda & Bidini, Gianni, 2015. "Performance characterization and modelling of syngas-fed SOFCs (solid oxide fuel cells) varying fuel composition," Energy, Elsevier, vol. 90(P2), pages 2070-2084.
  17. Ghorbani, Sh. & Khoshgoftar-Manesh, M.H. & Nourpour, M. & Blanco-Marigorta, A.M., 2020. "Exergoeconomic and exergoenvironmental analyses of an integrated SOFC-GT-ORC hybrid system," Energy, Elsevier, vol. 206(C).
  18. Li, Feng & Yuan, Yupeng & Yan, Xinping & Malekian, Reza & Li, Zhixiong, 2018. "A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 177-185.
  19. Sri Rahayu & Adi Ab Fatah & Girish M. Kale, 2021. "Facile Synthesis of Lanthanum Strontium Cobalt Ferrite (LSCF) Nanopowders Employing an Ion-Exchange Promoted Sol-Gel Process," Energies, MDPI, vol. 14(7), pages 1-10, March.
  20. Koo, Taehyung & Kim, Young Sang & Lee, Young Duk & Yu, Sangseok & Lee, Dong Keun & Ahn, Kook Young, 2021. "Exergetic evaluation of operation results of 5-kW-class SOFC-HCCI engine hybrid power generation system," Applied Energy, Elsevier, vol. 295(C).
  21. de Avila Ferreira, Tafarel & Wuillemin, Zacharie & Faulwasser, Timm & Salzmann, Christophe & Van herle, Jan & Bonvin, Dominique, 2019. "Enforcing optimal operation in solid-oxide fuel-cell systems," Energy, Elsevier, vol. 181(C), pages 281-293.
  22. Quach, Thai-Quyen & Giap, Van-Tien & Keun Lee, Dong & Pineda Israel, Torres & Young Ahn, Kook, 2022. "High-efficiency ammonia-fed solid oxide fuel cell systems for distributed power generation," Applied Energy, Elsevier, vol. 324(C).
  23. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
  24. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
  25. Sandhu, Navjot Kaur & Hanifi, Amir Reza & Woldnik, Andrew & Amiri, Taghi & Etsell, Thomas H. & Luo, Jingli & Sarkar, Partha, 2016. "Electrochemical performance of a short tubular solid oxide fuel cell stack at intermediate temperatures," Applied Energy, Elsevier, vol. 183(C), pages 358-368.
  26. Rayner, Addison J. & Briggs, Johnathan & Tremback, Reed & Clemmer, Ryan M.C., 2017. "Design of an organic waste power plant coupling anaerobic digestion and solid oxide fuel cell technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 563-571.
  27. Garg, Akhil & Vijayaraghavan, Venkatesh & Zhang, Jian & Lam, Jasmine Siu Lee, 2017. "Robust model design for evaluation of power characteristics of the cleaner energy system," Renewable Energy, Elsevier, vol. 112(C), pages 302-313.
  28. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  29. Mohammad Alboghobeish & Andrea Monforti Ferrario & Davide Pumiglia & Massimiliano Della Pietra & Stephen J. McPhail & Sergii Pylypko & Domenico Borello, 2022. "Developing an Automated Tool for Quantitative Analysis of the Deconvoluted Electrochemical Impedance Response of a Solid Oxide Fuel Cell," Energies, MDPI, vol. 15(10), pages 1-22, May.
  30. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
  31. Xuan-Vien Nguyen, 2019. "Fabrication and Performance Evaluation of Six-Cell Two-Dimensional Configuration Solid Oxide Fuel Cell Stack Based on Planar 6 × 6 cm Anode-Supported Cells," Energies, MDPI, vol. 12(18), pages 1-8, September.
  32. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  33. Fallah, M. & Mahmoudi, S.M.S. & Yari, M., 2017. "Advanced exergy analysis for an anode gas recirculation solid oxide fuel cell," Energy, Elsevier, vol. 141(C), pages 1097-1112.
  34. Matelli, José Alexandre & Goebel, Kai, 2018. "Conceptual design of cogeneration plants under a resilient design perspective: Resilience metrics and case study," Applied Energy, Elsevier, vol. 215(C), pages 736-750.
  35. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.
  36. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
  37. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
  38. Lucia, Umberto, 2014. "Overview on fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 164-169.
  39. Hui Xing & Charles Stuart & Stephen Spence & Hua Chen, 2021. "Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
  40. Hou, Rui & Zhang, Nachuan & Gao, Wei & Chen, Kang & Liu, Yongqiu, 2023. "Thermodynamic, environmental, and exergoeconomic feasibility analyses and optimization of biomass gasifier-solid oxide fuel cell boosting a doable-flash binary geothermal cycle; a novel trigeneration ," Energy, Elsevier, vol. 265(C).
  41. Elmer, Theo & Worall, Mark & Wu, Shenyi & Riffat, Saffa B., 2015. "Fuel cell technology for domestic built environment applications: State of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 913-931.
  42. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
  43. Choudhary, Tushar & Sanjay,, 2017. "Thermodynamic assessment of SOFC-ICGT hybrid cycle: Energy analysis and entropy generation minimization," Energy, Elsevier, vol. 134(C), pages 1013-1028.
  44. Yanxiang Zhang & Jingbo Ma & Mei Li & Yu Chen & Mufu Yan & Changrong Xia, 2016. "Plasma Glow Discharge as a Tool for Surface Modification of Catalytic Solid Oxides: A Case Study of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ Perovskite," Energies, MDPI, vol. 9(10), pages 1-8, September.
  45. Davide Papurello & Massimo Santarelli & Sonia Fiorilli, 2018. "Physical Activation of Waste-Derived Materials for Biogas Cleaning," Energies, MDPI, vol. 11(9), pages 1-12, September.
  46. Wang, Nan & Wang, Dongxuan & Xing, Yazhou & Shao, Limin & Afzal, Sadegh, 2020. "Application of co-evolution RNA genetic algorithm for obtaining optimal parameters of SOFC model," Renewable Energy, Elsevier, vol. 150(C), pages 221-233.
  47. Kasaeian, Alibakhsh & Hadavi, Hamed & Amirhaeri, Yasaman & Pourfayaz, Fathollah, 2022. "Thermodynamic analysis of a wood chips-based cycle integrated with solid oxide fuel cell," Renewable Energy, Elsevier, vol. 195(C), pages 1174-1193.
  48. Li, Zhengmao & Xu, Yan, 2018. "Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes," Applied Energy, Elsevier, vol. 210(C), pages 974-986.
  49. Zhu, Pengfei & Wu, Zhen & Wang, Huan & Yan, Hongli & Li, Bo & Yang, Fusheng & Zhang, Zaoxiao, 2022. "Ni coarsening and performance attenuation prediction of biomass syngas fueled SOFC by combining multi-physics field modeling and artificial neural network," Applied Energy, Elsevier, vol. 322(C).
  50. Thomas M. M. Heenan & Seyed Ali Nabavi & Maria Erans & James B. Robinson & Matthew D. R. Kok & Maximilian Maier & Daniel J. L. Brett & Paul R. Shearing & Vasilije Manovic, 2020. "The Role of Bi-Polar Plate Design and the Start-Up Protocol in the Spatiotemporal Dynamics during Solid Oxide Fuel Cell Anode Reduction," Energies, MDPI, vol. 13(14), pages 1-12, July.
  51. Cuneo, A. & Zaccaria, V. & Tucker, D. & Sorce, A., 2018. "Gas turbine size optimization in a hybrid system considering SOFC degradation," Applied Energy, Elsevier, vol. 230(C), pages 855-864.
  52. Das, Vipin & Padmanaban, Sanjeevikumar & Venkitusamy, Karthikeyan & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Siano, Pierluigi, 2017. "Recent advances and challenges of fuel cell based power system architectures and control – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 10-18.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.